Recent news

Luminescence of hexagonal boron nitride explained


Luminescence of hexagonal boron nitride explained

Luminescence of hexagonal boron nitride (hBN) has puzzled researchers for long time. In standard solid state physics textbooks direct band gap semiconductors are considered efficient light emitters while indirect ones are regarded as inefficient. Hexagonal boron nitride seems to defy this rule. In fact hBN emits light in the ultraviolet with an efficient comparable to… Read More

Direct and indirect excitons in boron nitride polymorphs: a story of atomic configurations and electronic correlation


Direct and indirect excitons in boron nitride polymorphs: a story of atomic configurations and electronic correlation

In this work we study how different atomic configurations, and electronic correlation modify the exciton dispersion in hexagonal boron nitride. We use two different approaches, ab-initio DFT plus many-body perturbation theory and tight-binding. We found that in the case of AB-stacking electronic correlation inverts the nature of the optical gap, from indirect to direct respect… Read More

OPTEL2D: Opto-electronic properties of 2D Transition Metal Dichalcogenides with DFT and post-DFT simulations


OPTEL2D: Opto-electronic properties of 2D Transition Metal Dichalcogenides with DFT and post-DFT simulations

Our Prace research project OPTEL2D “Opto-electronic properties of 2D Transition Metal Dichalcogenides with DFT and post-DFT simulations” has been accepted, and we got 49.5 million core hours on Marconi – KNL.     Here the project description: “Two-dimensional (2D) and layered materials possess novel combinations of electronic and optical properties and thus present a unique… Read More