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Introduction

We compute the photoluminescence of a monolayer of hexagonal
Boron Nitride from first principles. Our new approach allows to
have both direct peaks and satellites coming from phonon-assisted
transitions in the same spectra. We combine Density Functional
Theory (DFT), Density Functional Perturbation Theory (DFPT) and
Many-Body Perturbation Theory (MBPT) to obtain the exciton-
phonon coupling matrix elements ab initio. Then we make use of
the van Roosbroeck - Shockley relation, which is a steady-state
approximation, to compute the photoluminescence from the
dielectric function. Finally we compare our result with three
experimental measurements [1-3] and rule out the possibility of
phonon satellites being visible in the spectrum of monolayer hBN.

Exciton-phonon coupling

After computing the electron-phonon matrix elements in DFPT, we
rotate the matrix elements for chosen bands to obtain the hole-
phonon and electron-phonon matrix elements in the excitonic basis
Their difference defines the exciton-phonon coupling matrix
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Magnitude of the coupling (in eV) between the lowest-lying
exciton at I and all phonon modes over the Brillouin Zone

Direct/indirect energy
difference

Dispersion of lowest excitonic band associated PL spectrum
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Effect of the energy difference between direct exciton and indirect exciton
at K. Boltzmann occupation is displayed in green.

* The equilibrium exciton dispersion gives only the direct peak

* |n the case when the substrate brings them to the same
energy, only the direct peak is visible

* Only when K is lower, both direct and satellite peaks are
visible
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Photoluminescence of bulk AA-hBN
Red: this work
Black dots : experiment of Ref [4]
Blue : calculation of Ref [5]

» Correct position of all phonon-assisted satellites

is not in perfect match : probably multi-

phonon processes not treated in our theory

ties are in the correct order of magnitude
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* Indirect exciton not visible due
to high energy separation
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Photoluminescence of monolayer hBN
a) This work (shifted to match experiments)
b) Ref [1] on Graphite c) Ref [2] on SiO, d) Ref [3] on Graphite

Exciton dispersion
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Conclusion and perspectives

The lowest exciton at K comes from the
nearly-free electronic states at . It is not
contributing to luminescence and is lifted
in energy when a substrate is present.

* Ab initio exciton-phonon coupling and phonon-assisted luminescence with quantitative comparison of direct peaks and replicas intensities
* [n monolayer hBN, spectrum is dominated by direct peak and phonon-assisted satellites are not visible

 Would need the indirect exciton to be the lowest to produce a peak in the spectrum

‘ﬁ Study of a system with direct and indirect excitons very close in energy (Bernal BN)

Work out numerical issues and release the implementation
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