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Pseudo-potentials

We do not want to simulate core electrons:

1) they do not participate to chemical reactions, atomic structures, etc..

2) including all electron in the simulations increase computational time/memory 



  

An isolated atom in DFT
For a one-electron atom, the Coulomb potential,  

is spherically symmetric

 The solutions may  be split into a radial and an angular part
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An isolated atom in DFT
For a one-electron atom, the Coulomb potential,  

is spherically symmetric

 The solutions may  be split into a radial and an angular part

Withint DFT  the independent-particle Kohn-Sham states 
may be classified by the angular quantum numbers, 

subject to the effective potential

A one particle equation analogous to the Schrödinger equation 
for the one-electron atom, can be written as:
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Pseudopotential idea 1/2
Replacing the effects of the core electrons with an effective potential.Replacing the effects of the core electrons with an effective potential.

We rewrite the valence states as a smoother function and  
the remaining portion  in terms of core states :

 Next, we consider the product with one of the core states. Because the valence 
state has to be orthogonal to the core states, we have

We now rewrite the valence bands in terms of the pseudo-function:

Applying the Hamiltonian we get 



  

Pseudopotential idea 2/2
 All-electron and pseudo eigenvalues agree for the reference configuration.
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Pseudopotential idea 2/2
 All-electron and pseudo eigenvalues agree for the reference configuration.

All-electrons and pseudo-wavefunctions agree 
beyond a certain cutoff, r

c
 

Real and pseudo norm squares integrated from 0 to R 
for all R < r

c
 agree

Additional condition for transferability [see PRL 43, 1494 (1979)]
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How a pseudopotential is 
constructed

 1) Solve the all-electron atomic system

2) Decide which of the states are to be taken 
 as core and which are to be taken as  valence

There is no unique way to determine the V
nl
 ’s. There are two opposing considerations :

1. Good transferability  small r⇒
c
 .

2. Large r
c
  smoother pseudopotentials.⇒

 3) Generate the pseudopotentials, 
      V

nl 
(r), for the valence states. 



  

Exchange-correlation functions

LSDA

GGA

meta GGA

hybrid meta GGA
hybrid GGA

fully non-local

‘Earth’ 
Hartree Theory

‘Heaven’
Chemical Accuracy



  

Exchange-correlation functionals
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PROBLEM: HK theorem is not a constructive theorem!!



  

The energy functional
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The F [n] functional is the same for all electronic systems.

“No ones knows the true F [n], and no one will, so it is replaced 

by varios uncontrollable approximations.”  

            (Marder, p.247)



  

We split the problem in various parts….

• Kinetic energy functional

• Hartree energy functional  
  (exact)

T S [n ]=∑i

N v

⟨ϕi|−1
2

∇ i
2|ϕi⟩ where f

i
 are KS orbitals

• Exchange correlation functional
  (unknown)

F [n]=T S[n ]+U H [n]+EXC [n]

  

 €

Exc [n] contains T − Ts  and U −UHEXC [n ]

U H [n]=
e2

2
 d3 r d3 r '

n(r )n(r ' )
|r−r '|



  

The value of xc at any position r is calculated 
using only the value of  at that point.

Ex[ ρ(r ) ]=−
9α
8 ( 3

p )
1/3

ρ4/3 (r )d r

•  Correlation Energy
     - no analytic function for the uniform
       electron gas. (Cerperley Alder)
     -  Vosko, Wilk, Nusair functionals
     -  PZ, PW

•  Exchange Energy

((r))

  

 €

Exc
hom ((r))((r))
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Exc
hom

Exc
LSDA= ρ(r )[ ex

hom( ρ(r ) )+ec
hom ( ρ(r )) ]dr

Local Spin Density Approximation



  

Local Spin Density Approximation - Performance

• Structural properties are often good
- usually slightly underestimates bulk lattice constants
- bulk moduli are slightly too large
- phonons too stiff

• Binding energies are too negative
- overbinding of molecular and metallic solids, up to several eV
-  molecular atomization energies have a large error

• Activation energies for chemical reactions are unreliable

• Relative stabilities of bulk phases can be wrong.

• Density of states and band structure are okay but….

Ge



  

Local Spin Density Approximation - Performance

• Structural properties are often good
- usually slightly underestimates bulk lattice constants
- bulk moduli are slightly too large
- phonons too stiff

• Binding energies are too negative
- overbinding of molecular and metallic solids, up to several eV
-  molecular atomization energies have a large error

• Activation energies for chemical reactions are unreliable

• Relative stabilities of bulk phases can be wrong.

• Density of states and band structure are okay but….

Why does LSDA work?
- Many metallic systems are similar to a homogeneous electron gas.
- One might expect it to fail for molecular systems (it does!)

What are it’s shortcomings?
- self-interaction

Ge



  

Generalized Gradient Approximation

Based on the idea of doing a Taylor expansion of the density:

  

 €

f (ρ) = f (ρ0) + f '(ρ0)(ρ − ρo) + f ' '(ρ0)(ρ − ρo)2

2!
+L

it turns out that a simple Taylor expansion does not improve upon LSDA 
because it violates several of the constraints that the exchange-correlation 
functional is known to observe. 
Also the gradients in real materials are often large enough that the Taylor 
expansion breaks down.

  

 €

Ex/c
GGA [ρ(r)] = Ex/c

LSDA [ρ (r)]+ ΔEx/c
∇ρ (r)

ρ 4 /3(r)

 ⎡
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lim∇ρ→ 0 Exc = Exc
LSDA

Obey the uniform electron gas limit:



  

Development of Exchange and Correlation Functionals

Empiricism

•We don’t know the exact form of 
the exchange-correlation functional 
so write down a form and 
parameterize it to fit to a set of 
experimental or high-level ab-initio 
data.

• B88, mPW, LYP

Nonempiricism

•The exchange and correlation 
functional should be developed from 
first principles by incorporating 
known constraints.  Once the right 
constraints are met the rest will 
come out right.

• Often times the functional forms 
used are the same as, or based on 
those from empirically based 
functionals.

• PW91, PBE



  

Generalized Gradient Approximation

• Bulk lattice constants increase compared in LSDA

• Cohesive energies decrease compared to LSDA

• Atomic and molecular energies are improved

• Corrects over binding of LSDA

• Improves activation barriers, but they’re still too low.

• Improved relative stability of bulk phases.



  

Generalized Gradient Approximation

• Bulk lattice constants increase compared in LSDA

• Cohesive energies decrease compared to LSDA

• Atomic and molecular energies are improved

• Corrects over binding of LSDA

• Improves activation barriers, but they’re still too low.

• Improved relative stability of bulk phases.

Problems with LSDA and GGA
● Self interaction

●  Neglect of strong correlations

●  Exchange-splitting underestimated for narrow d- and f-bands.

●  Many transition-metal compounds are Mott-Hubbard or charge-transfer 

   (not described by LDA/GGA)



  

beyond GGA ……                          1/2

Meta-GGA Functionals
If we’re interested in following the Taylor-like expansion of the density the next 
logical step is the Laplacian of the density.

B95,B98,KCIS,HCTH,TPSS

 €

E[ρ(r)] ⇒ ∇ 2ρ(r)
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Meta-GGA Functionals

 €

E[ρ(r)] ⇒ ∇ 2ρ(r)

If we’re interested in following the Taylor-like expansion of the density the next 
logical step is the Laplacian of the density.

B95,B98,KCIS,HCTH,TPSS

LDA+U Method
●  A generalization of the LSDA method that takes into account orbital dependencies of the 

exchange and Coulomb interactions.
●  The correction is usually only considered for highly localized atomic-like orbitals on the 

same site.
●  The added term serves to shift the energies of the localized orbitals it is applied to relative 

to the other orbitals.

SIC -Self-Interaction Correction
Methods that use approximate functionals and add in 
a “self-interaction correction” to correct for the unphysical 
self-interaction that is present in many functionals.

..it requires U parameter...
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Hybrid Functionals   (scaling behaviour N4)

Exc
hybrid DFT

=(1−a)Ex
LSDA

+aEx
HF

+bDE x
NL

+Ec
LSDA

+cDE c
NL

• Functionals:
B3PW91, B3LYP, O3LYP, X3LYP

Exc
hybrid DFT

=(1−a)(Ex
LSDA

+DEx
NL

)+aEx
HF

+Ec
LSDA

+DEc
NL

• Functionals:
B1PW91, B1LYP, B1B95, mPW1PW91, PBE1PBE

Hybrid meta Functionals   (scaling behaviour N4)

• Hybrid functionals that contain kinetic energy density, in addition to    
Hartree–Fock exchange. 
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Hybrid Functionals   (scaling behaviour N4)

  

 €

Exc
hybrid DFT = (1− a)Ex

LSDA + aEx
HF + bΔEx

NL + Ec
LSDA + cΔEc

NL

• Functionals:
B3PW91, B3LYP, O3LYP, X3LYP
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Exc
hybrid DFT = (1− a)(Ex

LSDA + ΔEx
NL) + aEx

HF + Ec
LSDA + ΔEc

NL

• Functionals:
B1PW91, B1LYP, B1B95, mPW1PW91, PBE1PBE

Hybrid meta Functionals   (scaling behaviour N4)

• Hybrid functionals that contain kinetic energy density, in addition to    
Hartree–Fock exchange. 

Van der Walls Functionals  
Special functionals designed to give a better 
description of dispersion (van der Waals) 
interactions in DFT calculations



  

Miscellaneous



  

V-representability

"a number of 'reasonable' looking densities that
 have been shown to be impossible 

to be the ground state density for any V."

R. Martin 

The central assumption of KS is that such an equivalent system of non-interacting 
electrons always exists, i. e., that all interacting density 

can be represented by a non-interacting one



  

Temperature and particles
In a statistical mechanical framework the focus is on the grand canonical potential. 

Here, the grand canonical Hamiltonian plays an analogous role as the one played by 
the Hamiltonian for the ground-state problem.

Where the entropy operator is defined as

Kohn-Sham equations at non-zero temperature, and the density

Thermal Density Functional Theory in Context,  https://arxiv.org/abs/1309.3043

https://arxiv.org/abs/1309.3043


  

Summary
• As one climbs the Jacob’s ladder of density functionals, the complexity and cost of 
the calculation increase, as does the accuracy.

- LSDA  density only
- GGA  density and gradient of the density
- metaGGA  density, gradient of the density, kinetic energy density
- hybrid  density, gradient of the density, Hartree–Fock exchange
- meta hybrid  density, gradient of the density, kinetic energy 
  density, Hartree–Fock exchange.

• Different functionals within the same class can give very different results.
-  its not enough to say that you used GGA.  You must specify the use 
   of PBE, BLYP, etc.

Limitations of DFT
• Some systems cannot be well described by a single Slater determinant.
• Its hard to know how to systematically improve DFT functionals.
•  Does not obey the variational principle.  
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Strength of DFT

From W.Aulbur’s slides



  

• Neglect of strong correlations

  - Exchange-splitting underestimated for narrow d- and f-bands.

  - Many transition-metal compounds are Mott-Hubbard or charge-transfer

    insulators, but DFT predicts metallic state.

From J. Hafner’s slides

Metal in “LDA” 
calculations

LDA DFT Calcs.
 (dashed lines)  

Rohlfing and Louie PRB 1993

LDA, GGAs, etc. fail in many cases with strong correlations.

• Band-gap problem: HKS theorem not valid for excited states.

  Band-gaps in semiconductors and insulators are usually underestimated.

Can be fixed by 
GWA…etc

Weakness of DFT



  

Hybrid Functionals

What’s the rationale for adding Hartree–Fock exchange??
-  LSDA and GGA overbind.
-  Hartree–Fock theory underbinds.
-  LSDA and GGA give bond lengths that are too long.
-  Hartree–Fock theory gives bond lengths that are too short.

Perhaps if we mix the two together we’ll get numbers in the middle…

ROH = 0.9572

HOH = 104.52

R(O-H) Θ(H-O-H)
LSDA 0.9701 104.9605
PBE 0.9690 104.2068
BLYP 0.9706 104.5230
PBE1PBE 0.9575 104.9051
B3LYP 0.9604 105.1265
Hartree Fock– 0.9399 106.2709

Ebind (kcal/mol)

LSDA 7.95
PBE 5.05
BLYP 4.16
PBE1PBE 4.96
B3LYP 4.57
Hartree–Fock 3.49
Accurate 4.99

Hybrid methods also help correct the self-interaction problem, since in Hartree–
Fock theory it cancels out.



  

How do you Determine the Percent of HF Exchange?

• The most common way to determine the amount of Hartree–Fock exchange to 
include it to treat it as an optimizable parameter.

- Take a set of molecules for which the atomization energy, ionization potential, 
and proton affinities are well knows, as well as atomic total energies, and vary 
the percent of HF exchange until you minimize the unsigned error over this data 
set.
- B3PW1, B3LYP,O3LYP, X3LYP 

•There are some “parameter free” hybrid density functionals, where the 
percentage of Hartree–Fock exchange was determined based on a perturbation-
theory argument

-  B1B95, mPW1PW91, PBE1PBE (PBE0), B1LYP
-  in reality the percentage of HF exchange used cannot be

               determined nonempirically.  



  

Scaling Behavior

Scaling Behavior Method

N3 DFT(LSDA,GGA,meta)

N4 HF, DFT(hybrid,hybrid meta)

N5 MP2

N6 MP3, CISD, MP4DQ, CCSD, QCISD

N7 MP4,CCSD(T),QCISD(T)

N8 MP5,CISDT,CCSDT

N9 MP6

N10 MP7,CISDTQ,CCSDTQ
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