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Introduction

There is an oral tradition that says shortly after the Shmger equation was vali-
dated on/ atom andH, P.A.M. Dirac exclaimed that the chemistry had come to
an end. Fortunately some years later, in 1929, he added 'Uidafnental laws
necessary for the mathematical treatment of a large patydips and the whole
of chemistry are thus completely known, and the difficulggslonly in the fact that
application of these laws leads to equations that are togtnto be solved.”.
During the last 70 years, staring from the Thomas-Ferminy)dbere were pro-
posed many ways to solve approximately the Shrodingertequaith several
electrons. In 1999 W. Kohn and J.Sham received the Nobet oz the well
known Densitiy Functional Theory. They found an innovativey to deal with
many electron system using a three-dimensional electrdansity instead of a
3N-dimension wave-function. Their approach have openegdssibility to sim-
ulate thousands of different systems with an affordablepaer effort.

Several other techniques, different from DFT, exist to déti the time-independent
Shrodinger equation with many electrons. The so collednuma Monte Carlo
(QMC) techniquesqg; 10; 11) are some of the most accurate and efficient statisti-
cal methods for treating many body quantum systems. In teethay were used
to study different systems as quantum liquidg; (13; 14), atoms 2), molecules
(15; 16), solids (L7) and lattice models for strongly correlated electron syste
(18). Moreover QMC allows to include many important physicdbmmnations of
the system, such as cusp conditions, symmetries, exads]ibecause it deals
directly with the many body wave-function. In this thesis thwve used these
techniques to study molecular systems by introducing a niglwiyh correlated
wave-function 19).

Although QMC have led to great progress in understandingéne temperature
physics of strongly correlated electron systems, there ishvious way to extend
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it to finite low temperature. Even if there exist Monte Cadghiniques, as Path
Integral Monte Carlo, to study quantum system at finite teaipee, they are lim-
ited to the high temperature regime.

In this thesis following the idea of Car and Parrinello wesanat a new approach
to study many electron systems at low temperature usingsaick ionic dynamic
combined with a ground state QMC for the electrons. This etk then applied
to study high pressure hydrogen.

Hydrogen is the most abundant element in the universe. Be@ simple struc-
ture of hydrogen atom, it does not form the simplest solidéquids. It has a
very complex phase diagram that has been widely studied pgrarental 20)
and theoretical approache @1).

At low pressure hydrogen crystallizes as an insulating o solid. As the
pressure increase different molecular phases were ers@a@0; 22). At higher
pressure electron would no longer remain in localized boantdtals and would
instead delocalize. As predicted by the pioneering work @iwdr and Huntington
(1935), at extreme pressure, comparable with the onesrgresgiant planets, the
molecules of solid hydrogen will dissociate to form a momnoraic metallic solid.
Despite the simple interaction, the structure of this sbad been predicted to be
a simple hexagonal lattic8). At higher density some theoretical models has
suggested that compressed hydrogen can form unusual twpasgent quantum
fluid, made by electrons and protons, at low and even zerodeatyre 24; 25).
Moreover a recent study () predicted a maximum in the melting curve between
solid and liquid in high pressure hydrogen, confirming tresidf a possible stable
guantum fluid phase at low temperature.

Motivated by the so reach phase diagram we decided to igatstthe effects of
the correlation in high pressure hydrogen, and to this ereldecided to use a
resonating valence bond (RVB) wave-function together ithew technique to
simulate finite temperature systems. In the RVB approachvéniational trial-
function is written as an antisymmetrized combination afitt@ Each bond con-
tains two electrons shared by two orbitals. In fact afterdhiginal proposal by
Anderson, there is now a large amount of numerical evidehae the simple
but general resonating valence bond (RVB) wave functiontaios just those in-
gredients missing in uncorrelated theories, so that thenrfestures of electron
correlation can be captured by the variational RVB approdttreover from the
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computational point of view the remarkable feature of tipr@ach is that several
resonating valence bonds can be dealt simultaneously vathghe determinant,
at a computational cost growing with the number of electrsinglarly to more
conventional methods, such as Hartree-Fock or Densitytiamat Theory.

Thesis outline

The thesis is organized as follows:

In the first chapter we briefly review QMC methods mainly usedhis
thesis, the Variational Monte Carlo. Then we introduce thgipg wave-
function used to study molecular and solid systems.

In the second chapter two optimization methods, used in VE&I€,pre-
sented: Stochastic Reconfiguration(SR) and StochastmfRgaration with
Hessian acceleration (SRH). Advantages, limitationss &pd tricks are
shown for both of them.

In the third chapter we show the results obtained by applyiregparing
wave-function to different molecular systems.

In the beginning of the fourth chapter we show how to geneedhe pairing
function to study extended systems. Then we come back forike Wi
technical aspects of simulation of periodic systems.

In the fifth chapter a new method to simulate systems at fieitgerature is
presented. This technique has allowed us to perform ionm@uaycs using
noisy forces coming from Quantum Monte Carlo.

In the last chapter we show preliminary results obtained igh-pressure
hydrogen, using our new technique. Moreover our resulsaat us to
guess a new possible exotic phase in high pressure hydroyem ty the
electronic correlation.
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Chapter 1

Quantum Monte Carlo and the
JAGP wave-function

1.1 Variational Monte Carlo

The VMC is a stochastic method that allows to evaluate egpiect values of
physical operators on a given wave-function (see Ra§))( It is based on a sta-
tistical calculation of the integrals that involve the mealues of these operators.
() = [ Us(R)AV(R)dR

[ WR(R), Ur(R)dR
whereR = (ry, 79,73, ...ry) are the electron coordinates. Monte Carlo integration
is necessary because the wave-function contains expéiditfe correlations and
this leads to non-factoring multi-dimension integrals. tise that in the case of
the Hamiltonian operator, according to the variationahgiple, the expectation
value will be greater than or equal to the exact ground stagegy. We can write
the integrall.1las:

(1.1)

A = [ PRIAL(R)R

where P(R) in a probability density, and! (R) is the diagonal element associ-
ated to the operatod.

_ U7 (R)|?
P(R) = [ Ui (R)¥r(R)dR (1.2)
ay(r) = Al (1.3)

Vr(R)
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We can sample the probability distributid?®( R) using the Metropolis scheme
(27) and then evaluatel (R) on the obtained configurations. Then using the
central limit theorem the integral can be estimate as:

<A>var = % Z AL(Rm)

The sampling process continues until the desired statlstictor on the expecta-
tion value of the operatad is reached.

The VMC algorithm is implemented so that only a single elattis moved at
each time. In this way only one column or one row of the Paireratnant is
changed at each step. The new determinant can be compui¢d/inoperations,
given the inverse of the old pair determinant. This invesseomputed once at the
beginning of the simulation and then updated wheneverlantioae is accepted. If
the trial move is accepted, the inverse matrix is updateé{ iN?) operations. This
trick makes the VMC sampling very efficient. Notice that theedt computation
of a determinant take8(N3) operations.

1.1.1 Forces with finite variance

In VMC the expectation value of operators different from Hemiltonian is usu-
ally much less favorable and accurate than the one obtaordtié energy. This

is due to two kinds of errors: first the statistical one duehte finite sampling

in the Monte Carlo integration that behaveslds/N , where N is the number
of sampling points and second the systematic error ("biesilting from an ap-
proximated wave-function.

In order to understand the behavior of this errors we defiedrihl wave-function
error, 0V = U — U, , whereV, is the exact wave function. In the case of the en-
ergy, applying the variational principle (see for instanee (28)), one finds that
the systematic errah i goes adeltar ~ O(5¥?), whereA can be represented

as:
(Up — Wo|H — Eg| Uy — W)

(Ur[Ur)
Instead the statistical error is related to the variancéhefdperator on the trial
wave-function¥,. For instance for the energy:

Ap = (1.4)

o*(Er) = ((BL — Eu)*)ws.- (1.5)
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Using the equality:

E;, — E, = (H = Eo)(Ur = %) _ Ap (1.6)

W

it is easy to see that?>(E;) = O(6¥?). Thus in the case of the energy both
these errors vanish & d¥?). For any other operator that not commutes with the
Hamiltonian, ¥, is not anymore an eigenstate@fand so the systematic error is
Ao = O(6¥) while the statistical one i8?(O) = O(1) (see Ref. 29; 30).
The situation is even worst if we consider atomic or molectdeces. In fact, let
us derive the potential energy in the respect to an atomiitipos

B S Zi(Ry - RY) < (@ - By

FY = ——V(ri,..,tn; Ry, . Ry) = —Z A WL A4 At ML VY

A I (71, ., Ry ) A; R3 Azj: i R’
(1.7)

the second term in the right-hand side of this equation igaesible for a infinite
variance contribution.

In order to overcome this problem Assaraf and CaffaBd) proposed an original
and ingenious solution. Denotirt@ an arbitrary hermitian operator they showed
that is possible to define a new "renormalized” oper&auch that:

0) = (0) (1.8)
a2(0) < *O0). (1.9)
The new operato® is obtained from the old one by adding@oanother operator
with zero expectation value and finite variance, namely:
v
Uy’

0O=0+ -7

N Uy

(1.10)

whereH is an arbitrary Hermitian operator, afdis an auxiliary square-integrable
function. In the case of atomic forces, the simplest and:&ffe choice forH and
U is:

H = H (1.11)
b = QUy (1.12)
with N
Q%) = Za Pl sz‘). (1.13)
i—1 |75 — Ra
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This particular form cancels the pathological part in theetfarcel.7. The renor-
malized force reads:

M — —
o Z(RY — R} VQ4 Vg
Pi=oZad =

(1.14)

i£A
Notice that the infinite variance contribution in the barec#®l.7 no longer ap-
pears in the latter expression, indeed the new "renormdilimece 1.14has now
a finite variance. The use of "renormalized” operators h&snaad us to evalu-
ate forces with a finite variance and to perform structurdimjzation and finite
temperature dynamics.

1.2 Functional form of the wave function

In both variational Monte Carlo (VMC) and diffusion Monte i@a(DMC) (for

a review about DMC see Ref26)) the trial-function completely determines the
quality of the approximation for the physical observablBgcause of this, it is
extremely important to choose carefully a flexible waveetion that contains as
much knowledge as possible of the physics of the system Is¢uatied.

In the first part of this thesis we proposed an highly coreslaivave function
that is able to capture the major part of the correlation gyiefhe Antisymmet-
ric Geminal Product supplemented by the Jastrow correldtidGP). This wave
function is an extension of the Antisymmetric Geminal PrtiddGP, introduced
in quantum chemistry by ColemaB2):

Vagp(r1, 0y TN) = AHQE@(T% T2i-1) (1.15)

where A4 is the antisymmetrization operator. The AGP wave-funcimueter-
mined by the geminal, which is usually expanded in a oneghatasis:
O(ri,r) = Y Nmu(ri)dm(r5) (1.16)
1<i,m<r
wherer is the size of the orbital basis set. The geminal is then oetexd by
r(r — 1)/2 coefficients\. For instance, for the simple hydrogen molecules, using
only two orbitals as basic set, the AGP is:

U, = And1y(r1) ors (r2) + A2 (1) S 1 (r2) + A 1207 (1) o1, (r2) +Aa1 61, (r1) 14 (72)
(1.17)
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whereV 4, contains bonding and anti-bonding orbitals and so it is &blepro-
duce the Heithler-London limit. Notice that AGP wave-funatis similar to the
Gutzwiller BCS wave function used on lattice syste38)(

The full JAGP wave-function is defined by the product of diiet terms, namely
one-body, two-body, three-body Jastrdw J,, J3 and an antisymmetric paré/(=
JV aqp). The first term is used to satisfy the nuclear cusp condstiovhile the
second the electron-electron one. The third one is an ekpbatribution to the
dynamic electronic correlation, and the latter is able ¢atthe non-dynamic one
arising from near degenerate orbitals through the gemixadesion. Therefore
our wave function is highly correlated and it is expected it gccurate results
on widely range of systems.

1.2.1 Pairing determinant

As it is well known, a simple Slater determinant provides &xact exchange
electron interaction but neglects the electronic corr@hgtwhich is by definition
the missing energy contribution. In the past differenttsyées were proposed to
go beyond Hartee-Fock theory. In particular a sizable arhofithe correlation
energy is obtained by applying to a Slater determinant aafleet Jastrow term,
that explicitly takes into account the pairwise interacti®tween electrons.

On the other hand, within the Quantum Chemistry commungyAhtisymmetric
Geminal Product (AGP) is a well known ansatz to improve thet#oéry, because
it implicitly includes most of the double-excitations of Bifr state.

Recently a new trial function was proposed for atoms, theluishes both the
terms @). In the first part of this thesis we extend this promisingrapgh to a
number of small molecular systems with known experimentaperties, that are
commonly used for testing new numerical techniques.

The major advantage of this approach is the inclusion of n@ingxpansion
terms with the computational cost of a single determinawt. ifstance this has
allowed us to perform the full structural optimization offzene without a partic-
ularly heavy computational effort on a single processor mvae

For an unpolarized system containingelectrons (the firstV/2 coordinates
are referred to the up spin electrons) the AGP wave funcgan} x £ pairing
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matrix determinant, which reads:

Vagp(Tl, ..., Tn) = det (‘PAGP(Fu 77j+N/2)) : (1.18)

Here the geminal function is expanded over an atomic basis:

Pacr(,7) = D A Gaa (7)) dpm (), (1.19)
l,m,a,b

where indiceg, m span different orbitals centred on atom$, andi,j are coor-
dinates of spin up and down electrons respectively.
Differently from the previous pairing function formulatiq2), appropriate only
for simple atoms, here also off-diagonal elements are deduin the\ matrix,
which must be symmetric in order to define a spin singlet stereover this
formulation allows to easily fulfill other symmetries by ilmging the appropriate
relations among different; ,,,. For instance in homo-nuclear diatomic molecules,
the invariance under reflection in the middle plane perpandr to the molecular
axis yields the following relation:

ALD = (=1)Pmtpe b (1.20)

m,n m,n?

wherep,, is the parity under reflection of the—th orbital.

An important property of this formalism is the possibilitydescribe explicitly
resonating bonds present in many structures, like benzen@f’n different from
zero represents a chemical bond formed by the linear cortibmaf the m-th
and n-th orbitals belonging t@-th andb-th nuclei. It turns out that resonating
bonds can be well described through the geminal expansi@wiighing on the
appropriate/\gfjn coefficients: the relative weight of each bond is relatedht® t
amplitude of the corresponding

Also polarized systems can be treated within this framewaylusing the spin
generalized version of the AGP (GAGP), in which also the uneglorbitals are
expanded as well as the paired ones over the same atomicel@gsisyed in the
geminal 34).

Another important property of AGP wave-function is the stmmsistency: if
we smoothly increase the distance between two regibasd B, each containing
a given number of atoms, the many-electron wave funclidiactorizes into the
product of space-disjoint termis = ¥ 4 Q) U as long as the interaction between
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the electrons coupling the different regiadsnd B can be neglected. In this limit
the total energy of the wave function approaches the sumeokttergies corre-
sponding to the two space-disjoint regions. This propéigt is obviously valid
for the exact many-electron ground state, is not alwaydldfby a generic varia-
tional wave function as for instance configuration-intéiac (Cl) wave-function.
Notice that this property is valid when both the compound wedseparated frag-
ments have the minimum possible total spin. This is pregide relevant case
for hydrogen phase diagram studied in this thesis becausaweenot studied fer-
romagnetic or partially ferromagnetic phases, that arebetieved to be present
in the reasonable pressure-temperature range of hydrégrea discussion about
ferromagnetism in high-pressure hydrogen see R35))(

Now we want to highlight how it is possible to implement nagleusp con-
dition (see AppendiXC) for molecular systems with a pairing wave-function. A
straightforward calculation shows that the AGP wave fuwnctiulfills the cusp
conditions around the nucleusf the following linear system is satisfied:

(1s,2s)

N (r=Ra) =—Zy Y N1 6oi(r =Ry), (1.21)
C,j

J

for all b andy’; in the LHS the caret denotes the spherical average of th&abrb
gradient. If we impose that the orbitals satisfy the atonuispccondition on their
atom, this equation reduce to:

> N 6ei(Ra) =0, (1.22)
oy

and because of the exponential orbital damping, if the mactenot close together
each term in the previous equations is very small, of theraflexp(—|R, —R.|).
Therefore in the first part of this thesis, with the aim of nrakihe optimization
faster, we have chosen to useand2s orbitals satisfying the atomic cusp condi-
tions and to disregard the surh.22. In this way, once the energy minimum is
reached, also the molecular cusp conditidh&1) are rather well satisfied. Later
in the second part of the thesis we have adopted a differahtrare efficient
strategy to the cusp problem as described in the followictjce.



12 Quantum Monte Carlo and the JAGP wave-function

1.2.2 One body term

Another important term of our trial-function it is the onedy term. In fact as
pointed out in Ref.6), it is easier to optimize a one-body term explicitly rather
than including more orbitals in the determinantal basis set

Moreover, even ifitis possible to satisfy nuclear cusp dtiowls (see Appendig)
with the pairing determinant, this has to be done iteragidelring the optimization
process adding constraints to the variational parameteaproximately disre-
garding the term of the ef1.22 In order to solve efficiently this problem we
included nuclear cusp conditions explicitly in the one-ptetm, in the same way
of ref. (37):

N
Ji (7, ..y Ty) = exp [Z (&a(7) + Ea(fm))] : (1.23)
where ¢,(7;) orbital is used to satisfy the nuclear cusp conditions orleusc
a: p
—Z.r
&u(r) = T+ o) (1.24)

and the=(75,) = >, Ma,(Ti,) is a linear combination of atomic orbitals centered
on the nucleusg, and that do not effect the nuclear cusp condition. We haed us
Gaussian and exponential orbitals such to have a smootlvibeha@lose to the
corresponding nuclei, namely as:

Yai(F) = bas(Ra) = |F = Ru[?, (1.25)

or with larger power, in order to preserve the nuclear cuspldmns (1.24).

The basis sep, ;(7) is the same used in the so-called three-body term that we are
going to describe in the following. The same kind of behatias been imposed

for the orbitals appearing in the determinant. In this wag tluclear cusp con-
ditions are very easily satisfied for a general system comtgimany atoms, in a
simple and efficient way.

1.2.3 Two body Jastrow term

As it is well known, the Jastrow term plays a crucial role ieating many body
correlation effects. One of the most important correlatontribution arises from
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the electron-electron interaction. Therefore it is impaottto use at least a two-
body Jastrow factor in the trial wave function. Moreoverstkeérm reduces the
probability for two electrons to be close, and so decredsesaverage value of
the repulsive interaction, providing a clear energy gaire Two-body Jastrow
function reads: N
Jo(T1, .y TN) = €exp <Z u(rij)> , (1.26)
1<j

whereu(r;;) depends only on the relative distange = |r; — ;| between two
electrons and allows to fulfill the cusp conditions for opp®spin electrons as
long asu(r;;) — % for small electron-electron distance. The pair correlatio
functionu can be parametrized successfully by few variational patarse

We have adopted a functional formproposed by Fahy3g), that we found

particularly convenient:
r

u(r) = ST o)
where the variational parametéras been optimized for each system. In this
functional form the cusp condition for anti-parallel spilearons is satisfied,
whereas the one for parallel spins is neglected in order tadathe spin con-
tamination (for more details about spin contamination seke ®9) ). This allows
to remove the singularities of the local energy due to thiésioh of two opposite
spin electrons, yielding a smaller variance and a more effttY MC calculation.

(1.27)

1.2.4 Three Body Jastrow term

In order to describe well the correlation between electrbiessimple two-body
Jastrow factor is not sufficient. Indeed it takes into actaniy the electron-
electron separation and not the individual electronic fp@si~; and;. It is ex-
pected that close to atoms the correlation effects devigtefieantly from the
translational invariant Jastrow. For this reason we inticeda factor, often called
three body (electron-electron-nucleus) Jastrow, thati@ip depends on both
electronic positions; and;. The three body Jastrow is chosen to satisfy the
following requirements:

e The cusp conditions set up by the two-body Jastrow term anthdypne-
body term are preserved.
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e Similarly to the two-body we do not include any spin depergein the
three-body Jastrow. In the way the wave-function remairg@masnglet.

e Whenever the atomic distances are large it factorizes iptoduct of inde-
pendent contributions located near each atom, an impaegairement to
satisfy the size consistency of the variational wave furcti

Analogously to the pairing trial function in E4..19we define a three body
factor as:

J3(F17"'7FN> = ¢exXp (Zq)J(ﬁ??:;))

i<j

Oy(7is7)) = Y Gntar(F)em (7)), (1.28)

I,m,a,b

where indiceg andm indicate different orbitals located around the ataradb
respectively. Each Jastrow orbita) ,(7) is centred on the corresponding atomic
position R,. We have used Gaussian and exponential orbitals multiplyedp-
propriate polynomials of the electronic coordinates, tetlao different spherical
harmonics with given angular momentum, as in the usual Shatsis.

The chosen form for the 3-body Jastrotu48 has very appealing features:
it easily allows to include the symmetries of the system bpasing them on
the matrix gl‘ffr’L exactly as it is possible for the pairing part (e.g. by replgc
Awb with g% in Eq.1.20). Itis size consistent, namely the atomic limit can be
smoothly recovered with the same trial function when therixatrms gl[l,;z for
a # b approach zero in this limit (see Refl5)). Notice that a small non zero
value of gl“,;fl for a # b acting on p-wave orbitals can correctly describe a weak
interaction between electrons such as the Van der Waalegorc



Chapter 2

Optimization Methods

QMC calculations crucially depend on the quality of theltfianction, and so it
is essential to have an optimized wave-function as closesslge to the ground
State.

The problem of function optimization is a very importantegasch topic in numer-
ical simulation. In QMC, in addition to the usual difficusi¢o find the minimum
of multidimensional parametric function, the statistinalse is present in the es-
timate of the cost function (usually the energy), and itsvd¢ives , required for
an efficient optimization.

Different cost functions and different strategies wereduseoptimize a many-
body trial-function. Usually three cost functions were digg QMC optimization
energy, variance or a linear combination of them. In thisihee always used
energy optimization. The variance optimization have theaatage to be bounded
by below, to be positive defined and its minimum is known, bffecent authors
Ref. @0; 41; 42) recently showed that the energy optimization is more éffec
than the variance one.

There are different motivations for this: first, usually aaenterested in the low-
est energy rather than in the lowest variance in both vanali and diffusion
Monte Carlo; second, variance optimization takes mantitens to optimize
determinant parameters and often the optimization cantgek $n multiple local
minimum and it suffers of the "false convergence” problefd)( third energy-
minimized wave functions on average yield more accurateesbf other expec-
tation values than variance minimized wave functions4).(
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The optimization strategies can be divided into three aateg. The first strategy
is based on correlated sampling together with determanggitimization methods
(43). Even if this idea yielded very accurate results for thet-fiosv atoms 43),
this procedure can have problems if parameters affect thesyaand moreover
density ratio of the current and initial trial-function ieases exponentially with
the size of the systendld). In the second strategy one use a large bin to evaluate
the cost function and its derivatives in such way that thes@aan be neglected
and deterministic methods can be used (see for instafiget§)).

Third approach, the one we used, is based on an iterativaeitpato handle di-
rectly with noise functions. The first example of these mdthis the so called
Stochastic Gradient Approximation (SGA) Ret7], recently used also for struc-
ture optimization Ref.48).

In this thesis we have used two new optimization methods tbheh@stic Re-
configuration (SR) method.B; 49) and Stochastic Reconfiguration with Hessian
acceleration (SRH)50).

2.1 Stochastic Reconfiguration

Stochastic Reconfiguration (SR) technique was initial tigpexl to partially solve
the sign problem in lattice green function Monte Caid)(and then it was used
as an optimization method for a generic trial-functid®;(49). An important ad-
vantage of this technique is that we use more informationutath® trial-function
than the simple steepest descent allowing a faster optiimizaf the many-body
wave-function.

Given a generic trial-functio®, not orthogonal to the ground state it is possible
to obtain a new one closer to the ground-state by applyingieeator(A — FI)

to this wave-function for a sufficient large. The idea of the Stochastic Recon-
figuration is to change the parameters of the original faaltion in order to be
as close as possible to the projected one.

For this purpose we define:

Up) = (A—ﬁ) To(tfcp) (2.1)
W) = daol) + Y b ) 2.2)

k=1
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whereV  is the projected one an#. is the new trail-function obtained changing
variational parameters. We can write the equationZegas:

P
k=0
where P
OpUrp(z) = o In U (z) andOy = I (2.4)

Now we want to choose the new parameters in such a waylthas as close as
possible toV ». Thus we require that a set of mixed average correlationtiongc
corresponding to the two wave-functio@<, 2.1, are equal. Here we impose

precisely that: A A
(Ur|Ok¥7) _ (Y7[Ok|Vp)

— 2.5
Wil ¥p) () (29)

for k = 0,...,n. This is equivalent to the equation system:
Sog+ Y 6ay(0') = A—(H) (2.6)

00 (O%) +> 6y (OF0") = AMOF) — (O"H) for k # 0 (2.7)

Because the equation fax, is related to the normalization of the trial-function
and this parameter doesn’t effect any physical observdhileeosystem, we can
substituteia, from the first equation in the others:

N ~

S bausi = (OF)(H) — (O*H) (2.8)

where
s = ((OF = (O")(O' - (OY)) (2.9)

The solution of this equation system defines a direction engirameters space.
If we vary parameters along this direction for a sufficienadirstep At we will
decrease the energy.

The matrixsy ; is calculated at each iteration through a standard vanatislonte
Carlo sampling; the single iteration constitutes a smafiudation that will be
referred in the following as “bin”. After each bin the wavenfttion parameters
are iteratively updated according to

" = o 4 Sy At (2.10)

2
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SR is similar to a standard steepest descent (SD) calco)atioere the expecta-

tion value of the energy(«a;,) = %’g@? is optimized by iteratively changing the

parametersy; according to the corresponding derivatives of the energnégal-
ized forces):

OB (U[OWH + HO) (V|04 W) (W|H D)
L C 717 S C T RS

namely:

whereAt is a suitable small time step, which can be taken fixed or oeted at
each iteration by minimizing the energy expectation value.

Indeed the variation of the total energyE’ at each step is easily shown to be
negative for small enought because, in this limit

AE = —AtY  f2+ O(AP).

Thus the method certainly converges at the minimum wherhalfarces vanish.
In the SR we have
Oé?ew _ Oé;')ld + Z g;]ikat (213)

Using the analogy with the steepest descent, it is possibédw that conver-
gence to the energy minimum is reached when the valuatoifs sufficiently

small and is kept constant for each iteration. Indeed theggneariation for a

small change of the parameters is:

AE=-AtY 51 fif;.
1,J

and it is easily verified that the above term is always negdiecause the reduced
matrix s, as well ass™!, is positive definite, being an overlap matrix with all
positive eigenvalues.

For a stable iterative method, such as the SR or the SD onesia ingredient

is that at each iteration the new parametefsare close to the previous ac-
cording to a prescribed distance. The fundamental difiszdpetween the SR
minimization and the standard steepest descent is juséedeta the definition of
this distance. For the SD it is the usual one, that is definetthéyCartesian met-
ric A, = >, laj, — ax|?, instead the SR works correctly in the physical Hilbert
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space metric of the wave functioh, yielding A, = >, . s; j(a; — a;)(a) — ),
namely the square distance between the two wave functionsspmnding to the
two different sets of variational parametes'} and{«a;}. Therefore, from the
knowledge of the generalized forcés, the most convenient change of the vari-
ational parameters minimizes the functiotall + AA,, whereAFE is the linear
change in the energ E = — >". fi(a/; — ;) andA is a Lagrange multiplier that
allows a stable minimization with small changg of the wave functionr. Then
the final iteration 2.13) is easily obtained.

The advantage of SR compared with SD is obvious because isoesat small
change of the variational parameters corresponds to a tdrgege of the wave
function, and the SR takes into account this effect throinghEq.2.13 In par-
ticular the method is useful when a non orthogonal basissseséd, as we have
in this thesis. Moreover by using the reduced matrix is also possible to re-
move from the calculation those parameters that imply saedendancy in the
variational space, as it is shown in the following sectiohthis chapter.

2.1.1 Setting the SR parameters

In this thesis we have determinéd by verifying the stability and the convergence
of the SR algorithm for fixed\¢ value.

The simulation is stable whenevéfAt > A.., whereA., is an energy
cutoff that is strongly dependent on the chosen wave funaid it is generally
weakly dependent on the bin length. Whenever the wave fomas too much
detailed, namely has a lot of variational freedom, esplgcial the high energy
components of the core electrons, the value\gf, becomes exceedingly large
and too many iterations are required for obtaining a coregngariational wave
function. In fact a rough estimate of the corresponding neinab iterationsP is
given by PAt >> 1/G, where( is the typical energy gap of the system, of the
order of few electron Volts in small atoms and molecules.hidithe SR method
it is therefore extremely important to work with a bin leng#ther small, so that
many iterations can be performed without much effort.

In a Monte Carlo optimization framework the forcgsare always determined
with some statistical noisg,, and by iterating the procedure several times with
a fixed bin length the variational parameters will fluctuateuad their mean val-
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Figure 2.1: Example of the convergence of the SR method ®véniational pa-
rameters as a function of the number of stochastic iteratitmthe upper(lower)
panel the Jastrow (geminal) parameters are shown. For éaehion, a varia-
tional Monte Carlo calculation is employed with a bin contag 15000 samples
of the energy, yielding at the equilibrium a standard desrabf ~ 0.0018H.
For the first 200 iteratiomAt = 0.00125H !, for the further 200 iterations
At = 0.0025H 1, whereas for the remaining onég = 0.005H 1.
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ues. These statistical fluctuations are similar to the taémnise of a standard
Langevin equation:

O, = fro + Mk, (2.14)

where
()i (1)) = 2T n0ised(t — ) O - (2.15)

The variational parameters,, averaged over the Langevin simulation time (as
for instance in Fig2.1), will be close to the true energy minimum, but the corre-
sponding forceg, = —0,, E will be affected by a bias that scales to zero with the
thermal nois€l,, ;... Within a QMC scheme, one needs to estiniBtg,. by in-
creasing the bin length, as cleaffly,;. o< 1/Bin length, this noise being directly
related to the statistical fluctuations of the forces. Thnesd is an optimal value
for the bin length, which guarantees a fast convergence and the forces to be
biased within the statistical accuracy of the sampling. &beer in the fluctuation
around the minimum also non Gaussian correction will begargsut in analogy

to the an-harmonic effects in solids, this error is expettedanish linearly with
the temperaturd,.;... An example is shown in Fig2.1 for the optimization of
the Be atom, using a basis two exponentials for each orhitl tor the geminal
and the three-body Jastrow part. The convergence is reactagbut 1000 iter-
ation with At = 0.005H~'. However, in this case it is possible to use a small
bin length, yielding a statistical accuracy in the energycmpoorer than the final
accuracy of about.05m H. This is obtained by averaging the variational parame-
ters in the last 000 iterations, when they fluctuate around a mean value, allgwin
a very accurate determination of the energy minimum whidrsfées the Euler
conditions, namely witlyf;,, = 0 for all parameters. Those conditions have been
tested by an independent Monte Carlo simulation aboditimes longer than the
bin used during the minimization.

As shown in Fig2.2the Euler conditions are fulfilled within statistical accu-
racy even when the bin used for the minimization is much sengtlan the overall
simulation. On the other hand if the bin used is too small, ashave already
pointed out, the averaging of the parameters is affecteddigedole bias.

Whenever it is possible to use a relatively small bin in th@imization, the
apparently large number of iterations required for equdilon does not really
matter, because a comparable amount of time has to be spiat averaging of
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Figure 2.2: Calculation of the derivative of the energy witkpect to the second
Z in the 2p orbital of the geminal function for the Be atom. The calcuatof
the force was obtained, at fixed variational parameters, eyaging over10’
samples, allowing e.g. a statistical accuracy in the tatatgy of0.07mH. The
variational parameters have been obtained by an SR minimizavith fixed bin
length shown in the x label. The parameter considered hakthest deviation
from the Euler conditions.
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the variational parameters, as shown in RAd.

It is easy to convince oneself that for high enough accuraeynumber of
iterations needed for the equilibration becomes neglgitdm the computational
point of view. In fact, in order to reduce, e.g. by a factor eftthe accuracy
in the variational parameters, a bin ten times larger isireguor decreasing the
thermal nois€,,;.. by the same factor. Whereas to reduce the statistical dmyors
the same ratio, it has to be done averagé@htimes steps more. This means that
the fraction of time spent for equilibration becomes tenensmaller compared
with the less accurate simulation.

2.1.2 Stabilization of the SR technique

Whenever the number of variational parameters increase$ten happens that
the stochastiév x N matrix
(V[O:Op[¥) — (V|Ok]¥) (¥|O|¥)

STy ey (o) (2:49)

becomes singular, i.e. the condition number, defined asati®a = Ay /A, be-
tween its maximumh y and minimum eigenvalug,, is too large. In that case the
inversion of this matrix generates clear numerical insitéds which are difficult
to control especially within a statistical method.

The first successful proposal to control this instabilityswia remove from
the inversion problemd), required for the minimization, those directions in the
variational parameter space corresponding to exceedsmg@ll eigenvalues;. In
this thesis we describe a method the is much better. As a st we show that
the reason of the large condition numiseis due to the existence of "redundant”
variational parameters that do not make changes to the waaidén within a
prescribed tolerance

Indeed in practical calculations, we are interested in ti@mization of the
wave function within a reasonable accuracy. The toleramoay represent there-
fore the distance between the exact normalized variatisask function which
minimizes the energy expectation value and the approxiaateptable one, for
which we no longer iterate the minimization scheme. Foransee = 1/1000 is
by far acceptable for chemical and physical interest.



24 Optimization Methods

A stable algorithm is then obtained by simply removing theap@eters that do
not change the wave function by less thainom the minimization. An efficient
scheme to remove the "redundant parameters” is also given.

Let us consider theV normalized states orthogonal tio, but not mutually
orthogonal:

o) = (0= ONY)

V(T(Or — (Op))2]¥
These normalized vectors defifé directions in theV—dimensional variational
parameter manifold, which are independent as long as tlerdetantS of the
correspondingV x N overlap matrix

(2.17)

Skk = (ex]er) (2.18)
(exler) = 1 (2.19)

is non zero. The numbé is clearly positive and it assumes its maximum value
1 whenever all the directions are mutually orthogonal. On the other hand, let
us suppose that there exists an eigenvalwé s smaller than the square of the
desired tolerance?, then the corresponding eigenvector>= >". a;|e;) is such
that:

<U|U> = Z aiajgi,j = 5\ (220)
Y]

where the latter equation holds due to the normalizatiomlitimm > . a7 = 1. We
arrive therefore to the conclusion that it is possible torteé vectop with almost
vanishing normuv| = v/A < ¢ as a linear combination af,, with at least some
non zero coefficient. This implies that té directionse;, are linearly dependent
within a tolerance: and one can safely remove at least one parameter from the
calculation.

In general whenever there apevectorsy; that are below the toleraneethe
optimal choice to stabilize the minimization proceduredisegmovep rows andp
columns from the matrix4.18), in such a way that the corresponding determinant
of the (N — p) x (N — p) overlap matrix is maximum.

From practical purposes it is enough to consider an itezatcheme to find a
large minor, but not necessarily the maximum one. This ntktedased on the
inverse ofs. At each step we remove tlie- th row and column frons for which
5;; is maximum. We stop to remove rows and columns aftémversions. In



2.2 Structural optimization 25

this approach we exploit the fact that, by a consequenceeofdiplace theorem
on determinantss, , is the ratio between the described minor withoutthe th
row and column and the determinant of the futhatrix. Since within a stochastic
method it is certainly not possible to work with a machinegs®n tolerance, set-
tinge = 0.001 guarantees a stable algorithm, without affecting the aguof the
calculation. The advantage of this scheme, compared wélptévious on€(g),

is that the less relevant parameters can be easily identifiedfew iterations and

do not change further in the process of minimization.

2.2 Structural optimization

In the last few years remarkable progresses have been matkyétop Quan-
tum Monte Carlo (QMC) techniques which are able in principl@erform struc-
tural optimization of molecules and complex syste2® 62). Within the Born-
Oppheneimer approximation the nuclear positid?;s:an be considered as fur-
ther variational parameters included in the et} used for the SR minimization
(2.13 of the energy expectation value. For clarity, in order tetidiguish the
conventional variational parameters from the ionic posis, in this section we
indicate with{c;} the former ones, and witlk; the latter ones. It is understood
that RY = a4, where a particular indek of the whole set of parametefsy,; }
corresponds to a given spatial component(1, 2, 3) of thei—th ion.

We computed the forces acting on each of th#/ nuclear position§ ;. . .., Ry},
being M the total number of nuclei in the system:

ﬁ(éa) = _ﬁﬁaE({ci}aR’a) (221)
_ (V[ORH + HOu+ 0pHIY) (VORI (W|H|Y)
- ) P e #2

where operato©y are defined as logarithmic derivatives respect to nuclesi po
tion of the trial-function in analogy to the operatof, 2.4. This generalized forces
were than used to perform structural optimization usingttieeiteration 2.13.

In the first part of this thesis we have used a finite differemnneratoréa for the
evaluation of the force acting on a given nuclear position

—

A _ E(éa + A_Ra) B E(éa - ARa)

2
N AR +O(ARY) (2.23)
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whereAR, is a 3 dimensional vector. Its lengthR is chosen to b@.01 atomic
units, a value that is small enough for negligible finite eliénce errors.

In order to evaluate the energy differences in E@3with a finite variance
we have used the Space-Warp coordinate transformadi@rb@). This transfor-
mation was also used in the evaluation of the wave-functarivdtives respect to
nuclear position®)z. Even if Space-Warp transformation is a very efficient tech-
nique to reduce the variance of the forces, it is very timescomng and so for
larger systems we preferred to use Zero Variance for28s &s it was described
in the chapter 1.

The Og operators are used also in the definition of the reduced xnatior
those elements depending on the variation with respect twlear coordinate. In
this way it is possible to optimize both the wave function #melionic positions
at the same time, in close analogy with the Car-Parringffp(nethod applied to
the minimization problem. Also Tanak4dg) tried to perform Car-Parrinello like
simulations via QMC, within the less efficient steepest dastramework.

An important source of systematic errors is the dependehtieeovariational
parameters; on the ionic configuratior?, because for the final equilibrium ge-
ometry all the forceg; corresponding te; have to be zero, in order to guarantee
that the true minimum of the potential energy surface (PE3¢ached35; 56).

As shown clearly in the previous subsection, within a QMCrapph it is pos-
sible to control this condition by increasing systematicttie bin length, when
the thermal biag,,,;;. vanishes. In Fig2.3 we report the equilibrium distance
of the Li molecule as a function of the inverse bin length, lsat tan accurate
evaluation of such an important quantity is possible eveemwtine number of
variational parameters is rather large, by extrapolativegvalue to an infinite bin
length. However, as it is seen in the picture, though thausioh of the 3s orbital

in the atomic AGP basis substantially improves the equilibrdistance and the
total energy by~ 1mH, this larger basis makes our simulation less efficient, as
the time step)\t¢ has to be reduced by a factor three.

We have not attempted to extend the geometry optimizatidhéanore ac-
curate DMC, since there are technical difficulti&3)( and it is computationally
much more demanding.
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Figure 2.3: Plot of the equilibrium distance of theé, molecule as a function of
the inverse bin length. The total energy and the bindingggnare reported in
Tables3.3 and 3.2 respectively. For all simulations the initial wave-furstiis
optimized atli — Li distances a.u.
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2.3 Hessian Optimization

The SR method generally performs very well, whenever theanly one energy
scale in the variational wave function. However if there segeral energy scales
in the problem, some of the variational parameters, e.g.otles defining the
low energy valence orbitals, converge very slowly with exgpto the others, and
the number of iterations required for the equilibrationdres exceedingly large.
Moreover the time stefAt necessary for a stable convergence depends on the high
energy orbitals, whose dynamics cannot be acceleratechdey@ertain thresh-
old. Futhermore the SR method is based on a first order dysaiad as will be
illustrated in the following (see sectidn4.?), it is not adapted to perform param-
eters optimization during a ion Langevin Dynamics. In tliedis to overcome
these difficulties we have used a very efficient optimizatrethod the Stochastic
Reconfiguration with Hessian acceleration (SR5{) (

The central point of the SRH is to use not only directions gilg the gener-
alized forces2.1], to lower the energy expectation value, but also the infoiona
coming from the Hessian matrix to accelerate the convemeiite idea to use
the Hessian matrix is not new, already Lin, Zhang and Ragpepfoposed to use
analytic derivatives to optimize the energy, but their ismpentation was ineffi-
cient and unstable.

Now we will review the SRH method and we will explain the reasd its effi-
ciency.

Given an Hamiltonian{ and a trial-functiony,(x) = (x|¢,) depending on a
set of parameters = a1, as, ....cr,,, We want to optimize the energy expectation
value of the energy on this wave-function:

(el ) ,
Bo = S ala) (2.29)

respect to the parameters set.

To simplify the notation henceforth the symbol> indicates the quantum expec-
tation value over),, so thatk, = (H). In order the optimize the energy and to
find the new parameters = a + v, we expand the trial-function up to second
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order in~:
[ty = {1 DO — (05 + 03 e (0F — (09) (0¥ <0’f’>>] } 5a)
' o (2.25)
with 3 = 1, whereO* is the operator with associated diagonal elemetis (
aak¢a(x)
O = 2.26
AN (220

Here the constant will be used in order to highlight the various terms in the
energy expansions. Using the fact that:

<¢a‘wa> =1
(Gaty|ary) = 1+ (1+8) > ww((0F = (0")(OF = (0¥)) + 0(*)

kk'=1

we can expand up second order the energy given by the newfwagton, . (z)
and obtain:

E _ <wa+7‘H|¢a+7>
(CatalPats)
= Ea+2) (- E.,)O")

F 0 Y wnd(H — B (0F — (09)(0F — (0F)))
+ S{[0F = (0, [H — B, 0* — (04)])

We can define:

SPE = ([0F — (OM, [H — E,, OF — (OM]]) (2.27)
G = 2((H - B,) (0" = (0"))(0" — (O"))) (2.28)
fv = —2((H - E.) 0" (2.29)

and so the expansion of the energy reads:

AE= =Y it 5 (4D S+ 4G (230)
k

kK’
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The wave-function parameters can then iteratively chat@stiy at the minimum
of the above quadratic form whenever it is positive defined| i@ such case the
minimum energy is obtained for:

¥=B"'f (2.31)

where
B=S,+(1+0/G (2.32)

It can happen that the quadratic form is not positive defiaitd so the energy
expansior?.30is not bounded from below, this can due to different reasans:
guadratic corrections; statistical fluctuations of the s$il@s matrix expectation
value; or because we are far from the minimum. In this casesctrection
due to the equatiof.31 may lead to an higher energy thd,. To overcame
this problem the matrix3 is changed in such way to be always positive definite
B'" = B + uS, whereS is the Stochastic Reconfiguration mat&X. The use
of the S matrix guarantees that we are moving in the direction of d defined
minimum when the change of the wave-function is small, meeem the limit
of large . we recover the Stochastic Reconfiguration optimizatiornmet To be
sure that the change of the wave-function is small we use aaiqrarameter to
impose a constraint to the variation of the wave-functioiv’ F' by means of the
inequalities

AW F|* < r? (2.33)

where, using®2.9and2.25 [AWF|? = (¢a|dary) = D wywSEH . This con-
straint always allows to work with a positive definitive mati3’, and for small

r the energy is certainly lower thah,. We want to emphasize that the condi-
tion > 0 is non zero both whef.32is not positive defined and wheA W F|
corresponding to eq2.31exceeds . This is equivalent to impose a Lagrange
multiplier to the energy minimization, namelyE + p| AW F|?, with the condi-
tion |[AWF| =r.

There is another important ingredients for an efficient iempéntation of the
Hessian technique to QMC. In fact, as pointed out in Bef.68) is extremely
important to evaluate the quantities appearing in the lassB2in the form of
correlation functionk AB > — < B >< A >. This because the fluctuation of
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operators in this form are usually smaller than the onecaflB > especially if
A and B are correlated. Therefore using the fact that the expectatlue of the
derivative of a local valu®; = O¥ /W of an Hermitian operatad respect to any
real parameter in a real wave function is always zero (see for instancésy),
we can rearrange the Hessian terms in more symmetric waynmdécorrelation
function:

fi = (Bi(2)0"a@)) — (Br(x))(O*(x))
S = {Oa, EL(2)O" (2)) = (On, EL(2))(OF (2))
+ (O EL(2)0F()) = (Oay, Er(2)){0"(2))
SEE = (O (2)0F (x)) — (O (2)) (0¥ (x))
G = (0BL(2)60" (2)60"(x))

Because th&; matrix 2.28is zero for the exact ground state and therefore is
expected to be very small for a good variational wave-fungtiit is possible,
following the suggestion of Ref5(), to chose? = —1, so thatB = Sj, + uS. As
shown by Ref. §0) this choice can even lead to faster convergence than the ful
Hessian matrix.

The matrixG is the only part that is not in the form of a correlation fuoctj for

this reason is important thd does not depend on it, in such way to reduce the
fluctuation of the Hessian matrix, and this can naively expilae suggestion of
Ref. (60) to choses = —

As for the SR method the parameters are iteratively updatedyuhe equation:

7 =[S+ S f (2.34)

where the forces?and the matrix3 are evaluated using VMC.
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Chapter 3

Results on Molecules

3.1 Application of the JAGP to molecules

In the first part of this thesis we study correlation and at@tion energies, ac-
companied with the determination of the ground state optstracture for a re-

stricted ensemble of molecules. For each of them we perfdiafall all-electron

SR geometry optimization, starting from the experimentaleaular structure.
After the energy minimization, we carried out all-electtddhlC and DMC simu-

lations at the optimal geometry within the so-called "fixemtia approximation”.

The basis that we used was composed by exponential and @awsbitals for

both the three-body and the pairing determinant, in this @t the antisymmet-
ric and the bosonic part are well described. However, bothénAGP and in the
Jastrow part we never used a large basis set, in order to keepave function
as simple as possible. The accuracy of our wave function eambliously im-

proved by an extension of the one particle basis set. Neslesh, for most of the
molecules studied with a simple JAGP wave function, a DMCuation is able

to reach the chemical accuracy in the binding energies am@&k optimization
yields very precise geometries already at the VMC level.

In the first part of this section some results will be preserite a small set
of widely studied molecules and belonging to the G1 datab&sdahe second
subsection we will treat the benzene and its radical cafigH, , by taking into
account its distortion due to the Jahn-Teller effect, teavell reproduced by our
SR geometry optimization.
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Table 3.1: Total energies in variationati(,;-) and diffusion &pyc) Monte
Carlo calculations; the percentages of correlation eneegppvered in VMC
(EYMC (%)) and DMC EPMC (%)) have been evaluated using the “exadfp)
and Hartree—FockHy ) energies from the references)( Here “exact” means
the ground state energy of the non relativistic infinite eaclmass Hamiltonian.
The energies are iHartree

Ey Enpr Evuc EYMC (%) Epuc EPMC (%)

Li 74780669  -7.43272789)  -7.47721(11) 98.12(24) -7.47791(12) 99.67(27)
Lis 14.995416)  -14.8715216) -14.99002(12) 95.7(1) -14.99472(17) 99.45(14)
Be -14.6673659  -14.573023%9) -14.66328(19) 95.67(20) -14.66705(12) 99.67(13)
Be,  -20.33854(5)16) -29.13242(6)  -29.3179(5) 89.99(24) -29.33341(25) 97.51(12)
0 75.067369)  -74.809398%9)  -75.0237(5) 83.09(19) -75.0522(3)  94.14(11)

H,O  -76.438(3)60) -76.068(1)60) -76.3803(4) 84.40(10) -76.4175(4)  94.46(10)
0, 150.326816)  -149.665916) -150.1992(5) 80.69(7)  -150.272(2)  91.7(3)

C -37.8450 69) -37.688619%9) -37.81303(17) 79.55(11) -37.8350(6) 93.6(4)
Cy -75.923(5) 16) -75.4062016) -75.8293(5) 81.87(10) -75.8810(5) 91.87(10)
CH,  -40.51561) 40.21961)  -40.4627(3) 82.33(10) -40.5041(8)  96.3(3)

CsHs -232.247(4)62 -230.82(2)63 -231.8084(15) 69.25(10) -232.156(3) 93.60(21)

3.2 Small diatomic molecules, methane, and water

Except fromBe, and(C, all the molecules presented here belong to the standard

G1 reference set; all their properties are well known and replroduced by stan-
dard quantum chemistry methods, therefore they consttgteod case for testing
new approaches and new wave functions.

The Li dimer is one of the easiest molecules to be studied aftef/thehich
is exact for any Diffusion Monte Carlo (FN DMC) calculationtva trial wave
function that preserves the node-less structurg.is less trivial due to the pres-
ence of core electrons that are only partially involved ia themical bond and to
the 2s — 2p near degeneracy for the valence electrons. Therefore mathyis
have done benchmark calculation on this molecule to cheelaticuracy of the
method or to determine the variance of the inter-nucleasefaralculated within
a QMC framework. In this thesis we start frofii, to move toward a structural
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analysis of more complex compounds, thus showing that ouCCdproach is
able to handle relevant chemical problems.

With our approach more tha9% of the Li, correlation energy is recovered
by a DMC simulation (Tabl&.1), and the atomization energy is exact within few
thousands of eV((02 kcal mol~') (Table3.3). Similar accuracy have been pre-
viously reached within a DMC approad), only by using a multi-reference Cl
like wave function, that before our work, was the usual wajniprove the elec-
tronic nodal structure. As stressed before, the JAGP wavetifion includes many
resonating configurations through the geminal expansieyioid thels 2s HF
ground state. The bond length has been calculated at tregigaal level through
the fully optimized JAGP wave function: the resulting eduium geometry turns
out to be highly accurate (Tab&?2), with a discrepancy of onlg.001a, from the
exact result.

Table 3.2: Bond lengthgR) in atomic units; the subscriptrefers to the “exact”
results. For the water molecule is the distance between O and H ahd the
angle HOH (in deg), fo€ H, R is the distance between C and H ahid the HCH
angle.

Ro R 0, 0
Lis 5.051 5.0516(2)
O,  2.282 2.3425(18)
C, 2348  2.366(2)

H,0 1.809 1.8071(23) 104.52 104.74(17)
CH, 2.041 2.049(1) 109.47 109.55(6)
RgC RCC RgH RCH
CoHs 2.640 2.662(4) 2.028 1.992(2)

The good bond length, we obtained, is partially due to theggneptimization
that is often more effective than the variance minimizatesshown by different
authors 40; 41; 42), and partially due to the quality of the trial-function.

Indeed within our scheme we obtain good results without@iph the com-
putationally much more demanding DMC, thus highlighting ittnportance of the
SR minimization described in Subsectidrz.
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Table 3.3: Binding energies iaV/ obtained by variational Xy ,,c) and diffu-
sion (Apyc) Monte Carlo calculationsy\, is the “exact” result for the non-
relativistic infinite nuclear mass Hamiltonian. Also thegatages &y (%)
andAp (%)) of the total binding energies are reported.

A Avve  Avme(%)  Apume  Apmc(%)
Li,  -1.069 -0.967(3) 90.4(3) -1.058(5) 99.0(5)
O,  -5230 -4.13(4) 78.9(8) -4.56(5)  87.1(9)
H,0 -10.087 -9.704(24) 96.2(1.0) -9.940(19) 98.5(9)
Cs -6.340 -5.530(13) 87.22(20) -5.74(3)  90.6(5)
CH, -18.232 -17.678(9) 96.96(5) -18.21(4) 99.86(22)
CeHs -59.25 -52.53(4) 88.67(7) -58.41(8) 98.60(13)

Let us now consider larger molecules. Bath andO, are poorly described
by a single Slater determinant, since the presence of thelyoamic correlation
is strong. Instead with a single geminal JAGP wave funciiociuding implicitly
many Slater-determinants), it is possible to obtain a quite good description of
their molecular properties. In both the cases, the vanatienergies recover more
than80% of the correlation energy, the DMC ones yield more thayt, as shown
in Tab.3.1 These results are of the same level of accuracy as thosmedhtay
Filippi et al(16) with a multi-reference wave function by using the sameeslat
basis for the antisymmetric part and a different Jastrowofaé&rom the Tabl&.3
of the atomization energies, it is apparent that DMC comnaiolg improves the
binding energy with respect to the VMC values, although lhiese two molecules
it is quite far from the chemical accuracy Q.1 eV): forCs the error is 0.60(3) eV,
for O, is 0.67(5) eV. Indeed, it is well known that the electroniusture of the
atoms is described better than the corresponding moletihesbasis set remains
the same, and the nodal error is not compensated by the ediéfieygnce between
the separated atoms and the molecule. In a benchmark DM@latidm with
pseudo-potentiald), Grossman found an error of 0.27 eV in the atomization
energy forO,, by using a single determinant wave function. Probablyugdee
potentials allow the error between the pseudo-atoms angdgbedo-molecule to
compensate better, thus yielding more accurate energgreliftes. As a final
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remark on the&), andC; molecules, our bond lengths are in between the LDA and
GGA precision, and still worse than the best CCSD calcutatidout our results
may be considerably improved by a larger atomic basis set.

Methane and water are very well described by the JAGP wawgitum Also
for these molecules we recover more tts@4 of correlation energy at the VMC
level, while DMC yields more thafi0%, with the same level of accuracy reached
in previous Monte Carlo studie$l, 65; 66, 67). Here the binding energy is
almost exact, since in this case the nodal energy errorsseisgentially from only
one atom (carbon or oxygen) and therefore it is exactly corsged when the
atomization energy is calculated. Also the bond lengthsayely accurate, with
an error lower then 0.004,.

For Be, we applied a large Gaussian and exponential basis set faletiee-
minant and the Jastrow factor and we recovered, at the erpatal equilibrium
geometry, thé0% of the total correlation energy in the VMC, while DMC gives
97.5% of correlation, i.e. a total energy of -29.33341(25) H. Altigh this value
is better than the one obtained by Filigtial (16) (-29.3301(2) H) with a smaller
basis 8s atomic orbitals not included), it is not enough to bind thelecale, be-
cause the binding energy remains still positive (0.0069E7 Instead, once the
molecular geometry has been relaxed, the SR optimizatiols #nbond distance
of 13.5(5) a, at the VMC level; therefore the employed basis allows theatulle
to have a Van der Waals like minimum, quite far from the expental value.
In order to have a reasonable description of the bond lengththe atomiza-
tion energy, one needs to include at lea8t2p basis in the antisymmetric part,
as pointed out in Ref.68). Indeed an atomization energy compatible with the
experimental result (0.11(1) eV) has been obtained withenextended geminal
model 69) by using a much larger basis set (9s,7p,4d,2f,Z@).(This suggests
that a complete basis set calculation with JAGP may desatgmethis molecule.
However our SR method can not cope with a very large basiseasitfle compu-
tational time. Therefore we believe that at present theraoguneeded to describe
correctly Be, is out of the possibilities of the approach.
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Table 3.4: Binding energies il obtained by variationalX, ;) and diffusion
(Apyrc) Monte Carlo calculations with different trial wave funmtis for ben-
zene. In order to calculate the binding energies yieldedhby2tbody Jastrow we
used the atomic energies reported in R&j. (The percentagesy /(%) and
Apnec(%)) of the total binding energies are also reported.

AV]WC’ AV]WC’(%) ADMC AD]WC’(%)

Kekule + 2body -30.57(5) 51.60(8) - -
resonating Kekule + 2body -32.78(5) 55.33(8) - -
resonating Dewar Kekule + 2body -34.75(5) 58.66(8) -56.8%( 95.95(18)
Kekule + 3body -49.20(4) 83.05(7) -55.54(10) 93.75(17)
resonating Kekule + 3body -51.33(4) 86.65(7) -57.25(9) 69@l5)
resonating Dewar Kekule + 3body -52.53(4) 88.67(7) -5&8%1(98.60(13)
full resonating + 3body -52.65(4) 88.869(7) -58.30(8) 981B)

3.3 Benzene and its radical cation

We studied thé A, ground state of the benzene molecule by using a very simple
one particle basis set: for the AGP, a 2s1p DZ set centeredendarbon atoms
and a 1s SZ on the hydrogen, instead for the 3-body Jastrosd@aRZ-GTO set
centered only on the carbon siteSg H is a peculiar molecule, since its highly
symmetric ground state, which belongs to thg, point group, is a resonance
among different many-body states, each of them charaetétiy three double
bonds between carbon atoms. This resonance is respongitileef stability of
the structure and therefore for its aromatic properties. dt¢gted from a non
resonating 2-body Jastrow wave function, which dimerizesring and breaks
the full rotational symmetry, leading to the Kekulé confafion. As we expected,
the inclusion of the resonance between the two possible [Kedtates lowers the
VMC energy by more than 2 eV. The wave function is further ioyad by adding
another type of resonance, that includes also the Dewaribotibns connecting
third nearest neighbor carbons.

As reported in Tab3.4, the gain with respect to the simplest Kekulé wave
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Table 3.5: Bond lengths) for the two lowest B,, and®B;, states of the benzene
radical cation. The angles are expressed in degrees, the lengthggn The
carbon sites are numerated from 1 to 6.

?Ba, ?Bs, Computational method
acute obtuse
r(Cy — Cy) 2.616 2.694 B3LYP/cc-pVTZ4)
2.649 2.725 BLYP/6-31G*3)
2.659(1)  2.733(4) SR-VMC
r(Cy — C3) 2.735 2.579 B3LYP/cc-pVTZ4)
2.766 2.615 BLYP/6-31G*3)
2.764(2)  2.628(4) SR-VME
a(CsCiCy)  118.4 121.6 B3LYP/cc-pVTZ4)
118.5 121.5 BLYP/6-31G*3)
118.95(6) 121.29(17) SR-VME

function amounts to 4.2 eV, but the main improvement aris@s tthe further in-
clusion of the three-body Jastrow factor, which allows toorer the89% of the
total atomization energy at the VMC level. The main effecthaf three body term
is to keep the total charge around the carbon sites to appedgly six electrons,
thus penalizing the double occupation of fheorbitals. The same important cor-
relation ingredient is present in the well known Gutzwilesve function already
used for polyacetylener(; 72). Within this scheme we have systematically in-
cluded in the 3-body Jastrow part the same type of terms préas¢he AGP one,
namely bothy®® and \** are non zero for the same pairs of atoms. As expected,
the terms connecting next nearest neighbour carbon sgemach less important
than the remaining ones because the VMC energy does nofisagrly improve
(see the full resonating + 3-body wave function in Takl). A more clear be-
haviour is found by carrying out DMC simulations: the intesp between the
resonance among different structures and the Gutzwilkerdorrelation refines

more and more the nodal surface topology, thus lowering tN&CDenergy by
significant amounts.

Therefore it is crucial to insert into the variational wauméEtion all these in-
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Figure 3.1: Electron density (atomic units) projected om plene ofCs; Hs. The
surface plot shows the difference between the resonatiegea bond wave func-
tion, with the correctd1g symmetry of the molecule, and a non-resonating one,
which has the symmetry of the Hartree Fock wave function.
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gredients in order to have an adequate description of thecutd. For instance,
in Fig. 3.2we report the density surface difference between the nsonaing
3-body Jastrow wave function, which breaks thg rotational invariance, and
the resonating Kekulé structure, which preserves theecort;, symmetry: the
change in the electronic structure is significant. The bestit for the bind-
ing energy is obtained with the Kekulé Dewar resonating @ybweave function,
which recovers thég, 6% of the total atomization energy with an absolute error
of 0.84(8) eV. As PaulingA3) first pointed out, benzene is a genuine RVB system,
indeed it is well described by the JAGP wave function. MoesrdRauling gave an
estimate for the resonance energy of 1.605 eV from thernrocda experiments

in qualitative agreement with our results. A final remark atbthne error in the
total atomization energy: the latest frozen core CCSD(TQutations 62; 74) are
able to reach a precision of 0.1 eV, but only after the conedbeisis set extrapola-
tion and the inclusion of the core valence effects to go bdybe psudopotential
approximation. Without the latter corrections, the eroquite large and even in
the CCSD approach it is 0.65 eV4). In our case, such an error arises from the
fixed node approximation, whose nodal error is not compexday the difference
between the atomic and the molecular energies, as alredaygddn the previous
subsection.

The radical catiorCs H;~ of the benzene molecule has been the subject of in-
tense theoretical studi&s@), aimed to focus on the Jahn-Teller distorted ground
state structure. Indeed the ionizé#,, state, which is degenerate, breaks the
symmetry and experiences a relaxation from thg point group to two different
states?B,, and?Bs,, that belong to the loweb,, point group. In practice, the
former is the elongated acute deformation of the benzenaduex the latter is its
compressed obtuse distortion. We applied the SR struatptahization, starting
from the?E,, state, and the minimization correctly yielded a deformatimward
the acute structure for theB,, state and the obtuse for th&;, one; the first part
of the evolution of the distances and the angles during thimselations is shown
in Fig.3.3. After this equilibration, average over 200 further itépat yields bond
distances and angles with the same accuracy as the altegld8tYP/6-31G*
calculations reported in Ref3) (see Tab.3.5).

As it appears from Tab3.6 not only the structure but also the DMC total
energy is in perfect agreement with the BLYP/6-31G*, and mbetter than
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p(r) resonating Kekule - p(r) HF
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Figure 3.2: Surface plot of the charge density projectec dhte molecular

plane. The difference between the non-resonating (ingiicas HF) and resonat-
ing Kekulé 3-body Jastrow wave function densities is shoWbtice the corre-

sponding change from a dimerized structure tG'sarotational invariant density
profile.
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Figure 3.3: Plot of the convergence toward the equilibriveometry for the' By,
acute and théB;, obtuse benzene cation. Notice that both the simulatioms sta
form the ground state neutral benzene geometry and reldxanthange both in
theC' — C bond lengths and in the angles. The symbols are the same 03.5ab
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Table 3.6: Total energies for thé,, and? Bs, states of the benzene radical cation
after the geometry relaxation. A comparison with a BLYPMB53 and SVWN/6-
31G* all-electron calculation (Ref3]) is reported.

VMC DMC  BLYP/6-31G*SVWN/6-31G*
2B,, -231.4834(15) -231.816(3) -231.815495 -230.547931
2B,, -231.4826(14) -231.812(3) -231.815538 -230.547751

SVWN/6-31G* that does not contain semi empirical functigndor which the
comparison with our calculation is more appropriate, béuily ab-initio.

The difference of the VMC and DMC energies between the twdodisd
cations are the same within the error bars; indeed, the dé&tation of which
structure is the real cation ground state is a challenginglpm, since the exper-
imental results give a difference of only few meV in favor bétobtuse state and
also the most refined quantum chemistry methods are not eeaggnt among
themselves3). A more affordable problem is the determination of the bdi&c
ionization potential (AIP), calculated for tRé;, state, following the experimen-
tal hint. Recently, very precise CCSD(T) calculations hbeen performed in
order to establish a benchmark theoretical study for thé&zaiion threshold of
benzene4); the results are reported in Tak.7. After the correction of the zero
point energy due to the different structure of the catiorhwéspect to the neu-
tral molecule and taken from a B3LYP/cc-pVTZ calculatiopoded in Ref. 4),
the agreement among our DMC result, the benchmark caloulaind the exper-
imental value is impressive. Notice that in this case théw@ukl be a perfect
cancellation of nodal errors in order to obtain such an aeuvalue; however,
we believe that it is not a fortuitous result, because in taise the underlying
nodal structure does not change much by adding or removimggéeslectron.

Therefore we expect that this property holds for all the &ffiand ionization
energy calculations with a particularly accurate variagéilowave function as the
one we have proposed here. Nevertheless DMC is needed to tleachemical
accuracy, since the VMC result is slightly off from the expsgntal one just by
few tenths of eV. The AIP and the geometry determination Far @ H, are
encouraging to pursue this approach, with the aim to des@iugn much more
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Table 3.7: Adiabatic ionization potential of the benzendauole; our estimate

is done for the’ B;, relaxed geometries of the benzene radical cation, with an
inclusion of the zero point motion correction betweenihg, state and théA4,,,
neutral molecule ground state, calculated in R&faf the B3LYP/6-31G* level.

VMC DMC CCSD(T)/cc-p\weZ (4) experimentT5)

AIP 8.86(6) 9.36(8) 9.29(4)
AZPE, -0.074 -0.074 -0.074
best estimate 8.79(6) 9.29(8) 9.22(4) 9.2437(8)

interesting and challenging chemical systems.
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Chapter 4

Quantum Monte Carlo on extended
systems

A naive and certainly very inefficient way to study extendgstem is to simulate
clusters of atoms and to investigate the property of thetetuss the number of
atoms increase. In this limit the collective behaviour dd@asymptotically ap-
proach to the bulk solid one. However the number of atomsdhiatbe simulated
by QMC is so small that the properties of the cluster will bendwated by the
surface effects.

An alternative and efficient way to approximate the bulk gmjes of an infinite

simulation box

Figure 4.1: A simulation box with periodic boundary conalits.

system is the use of periodic boundary conditions (PBC) onitefbox. These
boundary conditions mean that the simulation cell is wrappeto itself and, as
an electron moves out of one side of the super-cell it imntetyianoves back
through the opposite side (see figuré). The advantage of using such boundary
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conditions is that there are no longer "surface electromsl hence no surface
effects. However even with PBC size effects are still pres&his is due to the
lack of long wavelength fluctuations in the charge density: &simulation box
of linear dimensior, the periodicity will remove any correlation length greate
thanL.

In this thesis we used a cubic simulation cell with voluftewith PBC, and the
size effects are partially taken into account by increaiiegsize of the super-cell.
The general hydrogen Hamiltonian with periodic boundanydition is written as:

N 1 1 1 N Nions
-y ler ! B
D AT Ve s R DO DD My sy
v ri7£7'j+R37R Rs
1 1
2 2« |Ri-R —R,
R#R;+R,, B

where i, are the vectors of the periodic lattice associated with theukation
box, r; are electron coordinates anﬁj are the proton coordinates, aidis the
number of electrons in the simulation cell. Infinite masshef protons is assumed
so that the kinetic term contains only the electronic ctnitiion. Notice that the
Hamiltonian4.1is invariant under the translation of any electron coortériay a
vector in R,. Moreover if the one body potential is generated by a ionitick,
the Hamiltoniant.1 has to be invariant also with respect to a translation given b
a vector of the ionic lattice. Notice that only for neutrasssms the sum of the
one and the two body potentiéallis well defined and convergent.

4.1 Periodic Wave-Function

As far as the electron part is concerned, by applying thelBsatieorem one finds
that the eigen-functions for the Hamiltonidri can be written as:

U (7, 7, ...) = e FETiD (7, 7%, ...), (4.2)

where®(7, 7, ...) is a function invariant for translation of any electron odier
nates by a vectcﬂ%s, andk is a vector in the first Brillouin Zone. Although better
choices are possible, as Baldereschi’s points, or usingtédiBoundary Con-
ditions (76), in this preliminary work on solids we adopted the simplesbice
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k = 0. The correct thermodynamic limit, within the Bohr-Oppenar approx-
imation, can be obviously reached for— oo at fixed densityp = N/L?. In
our simulations the distances are evaluated from the diasege of a given par-
ticle. One has to choose carefully an appropriate wavetifomdor a periodic
system. In fact, as the minimal inter-particle distanceahés from one image to
another, there could be a discontinuity in the derivativiethe wave function. If
this happen, the VMC energy can become lower than the truengrstate one.
This is due to the fact that the discontinuity leads)tiunctions that produce a
finite positive contribution to the kinetic energy that hawewill be missed by
the VMC sampling procedure, because it occurs in an irrelesarface of the
configuration space. In the past this problem has been sblyedaking use of
different approaches: either by summing over all possitniages by the Ewald
sums or by requiring that the trial-function and its derives$ vanish at the surface
of the sphere inscribed within the Wigner-Seitz c@lf). Instead in the present
thesis we introduced a simple and more efficient approachsbgperiodic or-
bitals with the correct behavior dt/2 without resorting the expensive evaluation
of the Ewald sums.

4.1.1 Periodic orbitals

In order to obtain periodic orbitals, starting from non jpelic ones it is sufficient
to replace the Cartesian coordinateswith a simple periodic function’(x) that
take into account the appropriate periodicity of the boxthis thesis we used:

T = %sin <7T§Z) (4.3)

and the new distance is defined as

3
L T,
== in? [ — 4.4
T - Zsm<L> (4.4)

In doing so, we have only to compute gradients and Laplacitmthe chain rule:
O(r) oo (r") or' oz

0x; or' 0z 0z,
Po(r')  Pd(r') (O Oz 2+0(I>(7“) Pr' [ 0a] Z@@%g
or?  0r? \0x) Ox or’ | 0z \ Ox; @l 0x?
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where

o} T
= cos

o’ owm <7r x; )
e B A

2

This transformation has been applied to all orbitals agpgan the wave-function
and also to the one-body term and the two-body Jastrow.

We remark here that also the normalization constant of angirbital has to be
changed in a periodic system. Namely its integral over theukation cell has to
be equal to one.

L/2 pL/2 pLJ2
/ / *(ria) dodydz = 1 (4.5)
—r/2J-L/2J-L)2
For instance a normal Gaussian in three-dimension:
2/{3 3/4
@(r):(—) e kr? (4.6)
T

becomes after the substitutidrs;
> (kL2 %%,
() = <Le—’“fz Iy {—ﬂ D e (4.7)

wherel, is the modified Bessel function of the first kind ahds the size of the
simulation box and’ is the periodic distancé.4.

4.1.2 The wave-function for high pressure hydrogen

In order to study the high pressure hydrogen we used thegiegeneralization of
the JAGP wave-function defined in the chapter 1. In the twdytdo2.3terms and
one-bodyl.2.2terms the distances electron-electron and electron-inegaced
with the periodic distance:
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where¢ indicates electron and proton coordinatgg?;. Both in the pairing de-
terminantl.2.1and in the three-body Jastrdiv2.4we used one orbital per atom
as basis set. In the first one we used periodic Gaussian lsrbitawhile in the
secons orbitals defined as:

pas(r) = 1P

where the distance between electrons is definetl@sWe found that this basis
set was sufficient to describe accurately the systems studie

4.2 Coulomb Interactions in periodic systems

In the evaluation of the potential energy in a periodic systiee interaction with
all possible images has to be considered. This fact coulagemaly inefficient the
simulation of periodic systems. The Coulomb interaction-ien, ion-electron
and electron-electron can be generally written as:

1 qiq;
U=3 > (4.9)

g RR, |6 & T s

where¢; indicates electron coordinatescorresponding t@; = —e and proton
coordinatesR; corresponding t@; = +e andR, are the vectors of the periodic
lattice associated with the simulation box. Notice thas gfummation converges
only for neutral system3_ ¢; = 0. For short range interaction it is possible to
consider only the closest images, that represents an effiare accurate way to
calculate the potential energy. For long range interadtierequation e¢.9 can-
not be used in a numerical simulation because the sum is i@wWysconvergent,
so other approaches are necessary.

It is not possible to use a truncated Coulomb potential. ¢t farge inaccuracies
are introduced by neglecting the long-range part (see R8)).(

In the following we present the well known Ewald method tHkdves to evaluate
in an efficient way the potential energy in periodic systems.

4.2.1 Ewald Sums

In 1921 Ewald 79) proposed an efficient way to recast the summadi®in two
rapidly converging series. Here in order to derive in a systiéc and controlled
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way the final result we consider a Yukawa potenti@l) = e~I"
limit |¢| — 0 only in the final expression. Following the Ewald’s idea wétshe
potential in two parts:

v(|r]) = viong([7]) + vsnore(|7]) (4.10)

where
Vshort(I7]) = v([rl)er fe(valr|) (4.11)
Vong(I7]) = v(|7]) = Vsnore(Ir]) = er f(Valr)u(|r]), (4.12)

er f is the error function andr fc the complementary one. Notice that the long
range part has several important properties:

1iII(1) Viong(T) = 2y/a/m (4.13)
Viong(K) = 47r/k26_k2/(4a) fore — 0 (4.14)
Viong(k = 0) = 4/ finite only for € > 0 (4.15)

On the other hand the short range potential decays veryrfastl space and
the sum converges very quickly. Sinéein Eqg.(@4.9) depends linearly on the
potential, we can easily decompose two contributions: atshage and a long
range one. Then the latter can be more easily evaluated ingrepace:

U = Ushort—range + Ulong—range
1
Ushort—range = 5 Z Qiqj'vshm‘t(‘gi - 53' + RSD
éi#fj"‘Rs,Rs
1 1
Ulong—range - 5 Z Qinvlong(|§i - éj + R D S Z Ulong('r - 0)Qz2
§i,&5,Rs
S ST
k;éO i.J

whereV is the volume of the unit cell and the sum over the momenta arh®
discretek values allowed by the periodicilzg/- R, = 2rn. In the latter expression
we have used Eg}(15 and the fact that the charge neutrality, ¢; = 0 implies
that thek = 0 term can be omitted in the sum for aay> 0. In this way the
limit ¢ — 0 can be found consistently also for long range potentialsipjacing
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expression4.14) in the corresponding Fourier transform foy,,,. For a non
neutral system instead the Ewald sum is divergent as exghecte
For Coulomb interaction the potential energy becomes:

U o= —ZZ 44 67‘f0<\/5(ﬁj+ﬁs)>

r T T
DI ) S L
- ik(7;—7) e~ o = Q. )
Vk[? T4
k£0 ©J i

In the potential energyt.16 the parameters: determines the convergence
speed in the real and Fourier space series. For a given chibice/e have chosen
a real-space cutoff distanee and ak. cutoff in the Fourier space. The cutoff
k. determines the total number of Fourier componefts,/3)n3, wheren, is a
positive integer. This parameter has been choosen in suay @hat the error on
the Ewald summation is much smaller than the Quantum Montk Gtatistical
one.

A careful choice of the parametarcan minimize the error in the summation (see
Ref. 80)). In our simulation we have chosen= L/5, whereL is the size of the
simulation box. With this cutoff it is sufficient to sum theshrange part in the
eq. 4.16only on the first image of each particle. Notice that duringre¥MC
or DMC simulation the ionic coordinates are fixed throughtig calculation.
Therefore the contribution of the ion-ion Coulomb interawtin the short-range
part can be evaluated only at the beginning of the simulatiaan electron is
moved during a VMC calculation the sum of the short range @fatie eq.4.16is
easily updated subtracting the old contribution elecitactron and electron-ion
due to the electrof, and adding the new one.

The sum in Fourier space can be written as:

2 N 2
dm -
— —|E|? /4a (o
Up = E VZ|2 <E sin(k ) + (E cos(krﬁ) . (4.17)

then for eachi vector all sin and cos are stored in such a way that when an
electron moves, the sum can be easily updated without edicglall the elements
from scratch.

It is easy to understand that the Ewald summation scalé€¥(a%). In fact the
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updating of the eq.16costs/V times the number of Fourier's components. Then
the number of Fourier component goes(agx)? wherea is proportionalZ and

for a given density scales &6. The Ewald sums are faster than the QMC sweep
and so, even if nowadays other faster techniques exist,raadtance particle-
mesh-based one, it was not necessary to adopt other mordicara@ methods

in our calculation.

4.2.2 Forces with finite variance in periodic systems

The method present in secti@ril.1can be easily generalized to periodic systems.
It is sufficient use an auxiliary periodic functighwith the same behavior df. 12
close to nuclei. We have used the following form:

Uppe = Qppc¥r
Nelect L : 27
, 5= sin (£ (z, — RY)
QPBC _ ZA E 2 (L A )

/
i=1 Tia

wherer’ , is the periodic distance between the nucldusnd the electron

iy = g\/sin2 (%(x} — R}L‘)) + sin? <%(x22 — Ri)) + sin? (%(xf — Ri)).
(4.18)

Notice thatVpz- is a periodic function because we are using a periodic trial
wave-functionV (see sectiod.1.2. This auxiliary function » 3~ removes the
divergence in the bare force and it is consistent with theop@ity of the system.

At variance of the case without periodic boundary cond&i®*Q »5- does not
cancel exactly the term coming from the derivative of the-éb&ctron potential.
Therefore we have to included both the Laplacian ofihe;- and the derivatives

of the ion-electron potential in the calculation of the fesc More precisely the
expression we used for the force is:

VQ eV
Ur

1
P = Fl;:zre - §v2Q;BC - (419)
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where:
, 272 s1n(2L ) sin(~ M)cos( M) 27 cos( Lmu)
VfQPBC - Z L2 7“7/:3 5u VZA L T
27rz “w n 2
, 7r sin( ) . (mat ik 1
ViQ%pe = ZAHXI:?) {3 {sm( 7 )cos( 7 )} 7

— C082 (—Wx ) + sm2 (ny) } i
L L 7’3
— 2ZA s {— sin (27m;/> — sin (wxi”) CoS (wxi”) CoS (27rxi”) i} i
L2 L L L L 2|

4.3 How to evaluate pressure

Following the seminal paper of O.H. Nielsen an R.M. Martirf.R81), the pres-

sure can be expressed as the negative trace of the stressTggs
(U |H|V)

Oeap (Ve|Ve)

where thel, is the wave-function "stretched” by the transformation aclepar-

ticle r;, — 1o + Zﬁ €apTip Wheree,s is a symmetric strain tensor. The pressure

is then defined through the negative trace of the stressitenso

Top =

(4.20)

3PV = —Tr[Th] (4.21)

For an isotropic system, as the one we studied, the presanrbeceasily written

o oE)  O(E)

v 0L
whereV = L3 and L is the edge of our cubic box. To evaluate this derivative
it is convenient to write the energy using rescaled distankat are invariant for
stretching of the simulation box, namety= r/L. After this transformation the
expectation value of the energy can be written as:

3PV = 3L2 (4.22)

<El> — <‘?Z<:;n> 4 <Eéot>’ (423)

whereE;, and £, are the kinetic and the potential energy in the new coordi-

nates. Thus the pressure will be:

o ) Bl 20,y o). @2
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whereOy, is the logarithmic derivative of the wave-function respecthe simu-
lation box sizeL: 9.0

Or = fy TT (4.25)
Notice that the box sizé, appears in the one-body terms and in the two-body
terms due to the cusp condistions, see AppefidiXhe first part of the expression
4.24is the usual Virial Theorem and the second one is given by ¢iméribution
due to the Pulay stress tensor. In fact although we usedlegiscaordinates, it is
not possible to cancel the dependencies of the wave-funfithon the simulation
box size. This is due to the nuclear and electronic cusp tiondithat depend
explicitly on L (see AppendixXC).
In the expressior.24 only the electronic kinetic energy is considered. When
we perform a dynamic on the ionic part, we have to add the pressue to the
momentum flux carried by the ions. This part can be easilyutaile with the

standard kinetic theory (see Appendix B of R&2)) of gas, and it reads:

2N, . .
<Pionic> - W<E]Zcomc>> (426)

the total pressure will be the sum of the iodi@6and electronic part.24

4.4 Empirical laws of melting

Although in general the melting and freezing transitionasfuniversal, there are
some useful phenomenological criteria which are usuallelaon the proper-
ties of only one of the two coexisting phases. The advantafjgreese empirical

rules is that they permit an estimation of the solid-liquagxkistence line, without
carrying out any free energy calculation.

The empirical rule of bulk melting is the so called Lindemaitecion accord-
ing to which a crystal melts when the amplitude of thermataiions (r.m.s.) ex-
ceeds a given thresholds of the order of the lattice spg®)e For many materials
this Lindemann ratio is about af 0.15 of the lattice space.

Another interpretation of the Lindemann criterion is thatiafinite solid will
become mechanically unstable at a sufficiently high tentpeza Although the
ideal mechanical instability temperature of a solid isetént, and of course some-
what higher than the true melting temperatiiye(where the free energy crossing
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of solid and liquid phases takes place),nonetheless it edrebristically taken as
a qualitative indicator of the tendency of the solid to melt.
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Chapter 5

A new technique for the simulation
of electronic systems at finite
temperature by means of noisy
QMC forces

The most common application of computer simulations is &alfmt the properties
of materials. Since the first works, by Metropolis et al. ardrki et al. 7; 84),
Molecular Dynamic (MD) techniques turned out to be a poweidol to repro-
duce the properties of materials in different conditiond also to predict them.
The combination of these techniques with the density foneti theory (DFT)
has become a widely accepted and poweathHinitio method: the Car-Parrinello
Molecular Dynamics (CPMD)54) that has allowed to study a broad range of
chemical, physical and biological systems. The CPMD appradfers a balance
of accuracy and computational efficiency that is well suit@dboth static and
dynamic calculations of numerous properties of systemi kiindreds and even
thousands of atoms. Although in principle DFT is an exacbihéor the electron
correlation, it relies on an unknown exchange and cor@tdtinctional that must
be approximated. The widely used Local Density ApproxioraiiLDA) is dif-
ficult to improve systematically. Therefore, in some case (for instance Ref.
(85)), one requires a more accurate computational approach,agithe quantum
Monte Carlo (QMC) approach to solve the Schrodinger equatery accurately.
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In this thesis, we present a new method that treats the efectithin the many-
body QMC and perform Molecular Dynamic "on the fly” on the iofifis method
provides improved dynamical trajectories and significantbre accurate total en-
ergies.

In the past two different approaches were proposed to coQpintum Monte
Carlo with ionic Molecular Dynamic. The first, called CouglElectronic-lonic
Monte Carlo (CEIMC) 8), is based on a generalized Metropolis algorithm that
takes into account the statistical noise present in the Qiéiation of the Bohr-
Oppenheimer surface energy. In the second approach, ¢tiatinuous Diffu-
sion Monte Carlo (CDMC)&4), the Molecular Dynamics trajectories are gener-
ated with some empirical models or by CPMD-DFT, and then tBMC tech-
nique is used to efficiently evaluate energy along the ttajexs. Both methods
present some drawbacks. In the second method even if alttipegies are eval-
uated using the Diffusion Monte Carlo, the trajectoriesgaeerated using empir-
ical models without the accuracy given by the QMC for the dtical properties,
as radial distribution, bonding lengths and so on. Instestthe first one the QMC
energies are used to perform the Monte Carlo sampling lgadimaccurate static
properties. In order to have a reasonable acceptance ritmwiis scheme sim-
ulations have to be carryed out with a statistical error anahergy of the order
of K, T Furthermore, in order to have a fixed acceptance rate theitamplof the
ionic move has to be decreased with the size of the system.

The method we present here, allows to solve two major drak#aicthe previous
two techniques. Following the idea of Car and Parrinelid) (ve will show that

it is possible to perform a feasibbb-initio Molecular Dynamics and structural
optimization in the framework of the Quantum Monte Carlo Isyng noisy ionic
forces, and with a method that do not contain any rejectibes®e, at the expense
of a time discretization error, that is present in any typ&i@f scheme.

5.1 The Born-Oppenheimer approximation

The idea of treating ionic dynamics classically, while &lees are in the ground-
state of the Hamiltoniad.1, is based on two very reasonable approximations: the
Born-Oppenheimer Approximation(BO) and the Adiabatic.one

In a system of interacting electrons and nuclei there willibeally small momen-
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tum transfer between the two types of particles due to thezy different masses.
On the time-scale of nuclear motion, one can therefore denshe electrons
to relax in the ground-state given by the Hamiltonian with tiuclei at fixed loca-
tions. This separation of the electronic and nuclear degoéé&reedom is known
as the Born-Oppenheimer approximation. Moreover sincesttezgy scale asso-
ciated with the electronic excitations is usually much¢airipan to the one related
to the ionic motion, one can safely consider the electrorh@irtown ground-
state. Although this approximation is not always fulfillides in the worst case,
for the simulation of the lightest atom, hydrogen, Galli kt(21), using the Car-
Parrinello molecular dynamics with DFT, showed that thettic band-gap is
about2¢V and that the first order correction due to the quantisticogsfen ions
is about2meV for pressure up t@00G Pa.
Although there are techniques, as Path Integral Monte Ctrltreat finite tem-
perature quantum systems, they become extremely inefficetow temperature
regime, therefore we have preferred to simply neglect quargffects due to the
finite protons mass.

5.2 Dealing with Quantum Monte Carlo noise

Recently different method were proposed to evaluate fopgeQuantum Monte
Carlo with a finite and small variance9),(52),(86) (see also sectioh.1.1for a
discussion about zero-variance principle).

It is well known that noisy forces can be used in different wak obtaining,
following a first order stochastic differential equationgtCanonical distribution.
For instance it is possible to use the Langevin dynamic defoye

T = By <—%+m) (5.1)
(m(t)) = 0 (5.2)
(m®n;(t)) = aii(x)o(t —1), (5.3)

wheren is a random noise with variance;;(x) and zero mean. It is easy to
show, using the Fokker-Plank equation associated to thusteamn, that in or-

der to obtain the usual Boltzmann distribution the matsihas to be chosen
as? = o 'K, T. The problem to obtain the desired canonical distributicaym
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be therefore solved in this way. In QMC one can calculate tvaigance matrix
a;i(x) = (fif;) — (fi)(f;) and then invert this matrix to obtajhand continue the
dynamics. This method is unfortunately very unstable, beeahe matrixa—*
can be ill-defined because of statistical fluctuations. Mweeit is not possible to
estimate the error on the temperature simulated.

Here we present a new method that uses these QMC forces torpexfMolecular
Dynamics at finite temperature. In the past the major prolénsing QMC to
performab-initio Molecular Dynamic was the presence of the statistical ntise
now we will show that this noise can be efficiently used asttabath. We called
this method Generalized Langevin Dynamics by Quantum M@Gai¢o (GLQ).

In our simulation there exists a correlated noise assatiat¢he forces. We rely
on the central limit theorem implying the noise in all companhof the forces
evaluated by QMC is Gaussian with a given covariance matvixused the Jack-
knife re-sampling method (see AppendiXto estimate the covariance matrix.
The idea of the GLQ is to use this noise to produce a given fieit@perature
using a Generalized Langevin Equation. The use of the Gireala_angevin
Equation (GLE) as thermostat is not new. In the past someeaitiave used this
approach to simulate different systems. This method wakeapfor the fist time
by Schneider and StolB{), to study distortive-phase transitions. Later the GLE
was used to simulate different systems and also to stabiizeisual Molecular
Dynamic method§&8).

5.3 Canonical ensemble by Generalized Langevin Dy-
namics
In order to simulate the canonical ensemble we use a Langgwiamics and we

assume that our system is coupled with a thermal bath due &mi@on Monte
Carlo statistical noise plus an additional friction term:

{ Bi(1)
a(t)

Vi (@), (t) + —fi(ri(t)) + T'(¢)

4 i 5.4
i) o0

(%
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with

L)) = ay()a(t —t) (5.5)
Ti(t)) = 0. (5.6)

wherel is a generic Gaussian noise that implicitly contains theass®ciated to
the statistical evaluation of the forces by QMC. Notice thahis case an explicit
dependence anof the noise has been taken in account. This is a realistectbas
has not been considered so far not everB®).(In the following we determinate
a form for the friction matrixy,;(x) that allows to converge the usual Boltzmann
distribution at a given temperature.

To this purpose we write down the corresponding Fokker-Elagquation.
Following (90) we have to evaluate the drift and the diffusion coefficient:

Di(z,t) — lil%%(xi(thr)—xi(t)) (5.7)
Dylet) = 5 lim (ol +7) —w@la (¢ +7) — (0] (6.8

A straightforward calculation shows that:

D) = —lay(t) + 1 (5.10)
Dys, = Dy =0 (5.11)
Dy, = O‘JT(”“") (5.12)

And so the corresponding Fokker-Plank equation will be:

oW (z,v,t) o 0 . i 0 [aj(x) 0
— 5 = XZ: {axivl + o0 [—%j(a:)vj + Ej + o { 5 a—vj Wz, v,t)

(5.13)
Then the friction matrixy is chosen in a way that the stationary solution of the
Fokker-Planck equation is the canonical distribution:

Dea(V1y oey Upy Ty ooy T) = € PH. 5.14
q

More precisely by substituting the Boltzmann distribution

Weg(z,v) =€ KT (5.15)
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in the equatiorb.13we obtain:
%

5 (2)6m; (5.16)

Yij(z) =

So for a given noise on the forces; and the desired temperature we can set the
friction tensor using egb.16in order to obtain the Boltzmann distribution.
Notice that the external random noise scalg/as(see also Ref. 90)) whereas
the QMC noise scales as Therefore in the limit- — 0 if we do not add any
external noise and we sétaccording to eq.5.16 the system will converge to
the Newton dynamics at zero temperature. Neverthelessi@adi appropriate
external noise it is possible equilibrate the system to #n@onical ensemble at
the desired temperature.

A peculiar feature of this approach is that in the limit of dimathe statistical
error on the forces becomes irrelevant because./7.

The stability of this approach compared with the first ordangevin Dynamic
is now evident, in fact there is no need to calculate the swerf the covariance
matrix. Moreover in the second order Langevin Dynamics émegerature can be
estimated at posteriori by equality:

3 1
S KT = 5M<V2>, (5.17)

compensating the error in the integration of the GLE.

5.3.1 Numerical integration of the Generalized Langevin Ega-
tion

In the literature there are different algorithms to inteégraumerically the Gen-
eralized Langevin Equation. The most common ones are the @BK vGB82
(92) and the Impulse Integrator (LIPB). All of them, in the limit of Newtonian
dynamics, ag — 0, reduce to the well known Verlet method:
-
Although these methods offer good numerical accuracy,rathieria have to be

considered for the choice of the algorithm. In our approdehftiction is related
to the quantum Monte Carlo noise, and so, in order to simutatetemperate

xn—l—l — 9" — xn—l 4 7_2

(5.18)
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phases, it can happen that we are forced to use a large friptetrix. Due to
this, an integration algorithm that allows to work acculatgith a large friction
is required. In the limit of large friction, or equivalentty; — 0 the eq. 5.4
reduces to the simple Brownian dynamics. In this case the B&t€me becomes
unconditionally unstabledd), and this fact automatically excludes this algorithm.
Instead the other two schemes reduce respectively to trendemrder explicit
Adams formula and to the Euler-Maruyama method (see R&J).(In this thesis
we have decided to use the Impulse Integrator proposed bl &ick [zaguirre
(93) that achieves a good accuracy (see AppeBdiand it is simple to implement.
Moreover in order to integrate the Langevin dynanticéwe have generalized this
algorithm to a non-diagonal friction tensor. So we rewtrite equatiorb.4in the
simpler form:

v+ Av =g (5.19)

where A is the friction tensor ang = % + I'. The forcesF’ are evaluated with
QMC, I" contains therefore the noise of the QMC evaluatiorf @nd a possible
additional external generated noise. The friction tensassumed to be deter-
mined without noise but can explicitly depend on the atonusitions.*. Then
we factorize the matrixd = LAL", whereA is a diagonal matrix and contains
the corresponding eigenvectors. Substituting this fazation into eq.5.19

LTy + ALTv=1L1L"¢g (5.20)
Defining the vectorsy = L7v we obtain:
W+ Aw = L"g. (5.21)

Now the equation is in the usual diagonal form with the nevedss = L7g.
We assume that the friction matrix is slowly varying compghate the forcesy
and so the usual integral schemeQ3) is used for the variablev. Finally the
transformationv = Lw is applied to come back to the original variables. The
final integration formula is:

P = LI+ e LT — Le ™ M LT LrA™ (I — e ) LTg  (5.22)

LStrictly speaking in the following we relatgto the covariance matrix, that then is evaluated
statistically. We neglect here this statistical noise.
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Then we can write the final formula to obtain velocities:

Ae™7 e A — T+ AT
no__ LiLT n __ ,n—1 L I —
! I—e A" (=) 4 L ( AT(I — e77)

) LTg (5.23)

5.4 Practical implementation of the finite tempera-
ture dynamics

In the same spirit of the Car-Parrinello dynamics, at eacdlicionove, eq.5.22,
the parameters are optimized using é31 This has allowed us to relax the
wave-function to the energy minimum during the ionic dynesni We call this
technique Generalized Langevin Dynamics using Quantumt&@arlo noisy
forces(GLQ).

In order to simulate finite temperature systems using the @@iamics some
control parameters has to be fixed for an efficient schemeus.@hagine that we
want to simulate a system at given temperatlirend densityrs. First of all we
have to choose the friction tensor. Two choices are possthkefirst one is to
work with the friction as small as possible, compatibly witle QMC noise, in
order not to affect dynamic properties; the second choite choose the friction
in such a way to achieve the maximum convergence speed. drihbsis we
did not investigate dynamical properties and so we optedhfersecond choice.
Second, we have to determine the two parametanrsd A see eq2.33and5.22
We have chosen as big as possible to have a stable optimization. Insfe&ds
been chosen enough small to allow the Hessian optimizatidoliow the ionic
dynamics. This can be easily checked controlling if thedsg11are zero within
a given accuracy. For example for a system ©@hydrogen atoms we have used
a time stepA of the order 0f0.3fs for a temperature arounth0K. For higher
temperature in order to maintain the same precision betwwaa dynamics and
optimization of parameters the time stépis roughly rescaled as 1/v/T in
such a way to maintain the same mean ionic $tépR|) ~ \/(v2)A. Moreover
to have a stable minimization not all parameters have to bagéd at each ionic
step but only the most relevant, see the forthcoming seétib:2

Thanks to GLQ technique we were able to simulate reasonalig lsystems, by
using highly correlated wave-functions with many paramsefsee figuré.1) and
with essentially a single processor machine.
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GLQ dynamics of 54 Hydrogen atoms at 100K Rs=1.31
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Figure 5.1: lonic dynamics of 54 hydrogen atoms using GLQhwitime step
0.4fs, starting from a BCC lattice. The trial wave-function cdn&a2920 varia-
tional parameters and we have optimized 300 of them at eaph Ist the inset the
maximum deviationF; /A F; of the forces acting on the variational parameters is
shown.
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5.4.1 Setting the parameters in the Langevin dynamics

Parameters of the Ecp.22can be tuned in different ways according to what we
want to simulate. As shown by Re87; 88) the Generalized Langevin Dynamic
allows to study dynamical properties with the conditiort it friction termry is
small compared to the typical frequencies of the systengaahtbo largey over-
damps the low-frequency vibrational modes (see R88))( Therefore in order
to have the desired smadllthe only possible solution is to increase the VMC bin
length in such a way that the VMC noise decrease to the desiled.

On the other hand if only static properties are required jgassible to tune GLE
parameters in a more efficient way. In fact, although by outhme it is possible
to work only with QMC noise, it can be convenient sometimeadd external
noise to the forces for different reasons.

Let us imagine to simulate a system at high temperature alfctise there are two
possibilities: either the bin length used to evaluate tihed® has to be decreased in
order to increase the QMC noise, or the friction has to bealesiaccording to Eq.
5.16that implies a corresponding reduction of the dissipatiothe system. But
both these solutions present some problems. In the firstargseannot decrease
the bin length below a certain threshold otherwise the Hypsis of Gaussian
noise is no longer fulfilled and the optimization algorithecbmes unstable; in
the second case the use of a very small friction matrix leadd@ng convergence
time that is related to the smallest eigenvalues ofitheatrix 7 ~ %Ln

For these reasons we found that is more convenient to addhekigoise to the
system, in such a way to produce the desired temperatureavgitten bin length
and to maintain the friction matrix not too small. To this pase we have added
a Gaussian noise with diagonal correlation matrix:

Li(t) = Tu(t)+n(t) (5.24)
(mn;(t) = Biyo(t -t (5.25)
Tin; ) = 0 (5.26)
TiOT5(t)) = (ay + By) ot =) (5.27)

This procedure allows us to achieve the maximum efficiencgmihis possible
to set they as close as possible to the critical dumping of the systeen{assone,
Car and Mauri Ref. 46)).



5.4 Practical implementation of the finite temperature dyita 69

5.4.2 Following the ionic dynamics

A reasonable approximation for the physical forces actingtlee ions are the
ones calculated when the electronic system is at the enengiynom with the
chosen variational ansatz. Therefore in order to genehstedrrect dynamical
trajectories for the ions it is extremely important to rethe trial function to the
minimum energy at each ionic time step. As shown by diffeagrthors first-order
optimization methods, as stochastic gradient or stoahestonfiguration, defined
by:

v =9"1F, (5.28)

whereS is a positive definite matrix, anﬂ is the vector of the generalized forces
eq. 2.11fails to follow a second order dynamic87). This causes a systematic
error in the ionic forces, because the wave-function is htit@energy minimum.

To overcome this problem many techniques were used, suchraBa&rinello
dynamics (54)), or conjugate gradientsq{)). In our work we used a new tech-
nique that is suited very much for energy optimization by nseaf Quantum
Monte Carlo, the SRH method. The major advantage of this odet that it
uses the information coming from the Hessian. Thanks to #&skn matrix this
method is able not only to follow the direction of the minimbut also to estimate
the distance from the minimum for each parameter in such atwagnverge in
few steps. Moreover, if we start from an optimized trial ftion and we move the
ions not too fast, we can maintain the system in a regime irthvtiie quadratic
approximation is always valid so that in principle the Hassbptimization con-
verges always in one step.

5.4.3 Reducing the number of parameters

After each ionic move it is important to optimize the triahfttion to be as close
as possible to the variational ground state. The point isttieae are some parts
of the wave function that vary a bit between different ionbmfigurations, as for
example the two-body Jastrow factor or the core orbitalddaye ions. So it is
not important to move all parameters at each step, but itngdmental to rec-
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ognize which ones have to be optimized because they areofartfie minimum.
Moreover since we are performing an optimization in the eneg of noise it is
possible to know the exact minimum only within a given stat&d error due to
the finite sampling. So we fix a toleran€and move only such parameters whose
generalized forces satisfy: 7

AF > ¢ (5.29)
we have chosen ~ 4 that amounts to change on average 2h% of the varia-
tional parameters. This procedure has allowed us to foll@idn dynamic with
a stable and fast optimization on the variational paramsetdoreover to stabilize
the optimization procedure other two cautions were used:
1. Itis very difficult to parametrize an highly correlatedweafunction with many
parameters. In fact it happens often that in this case tlobasdic matrix becomes
singular because there are too many parameters redunddest¢abe the wave-
function and some of them have to be eliminated for a staliiexagfation scheme,
see sectio.1.2
2. It can happen that the Hessian Matrix is not positive defirthis can be due
to different reasons: a statistical fluctuation due thedismpling or because
the trial-function is far from the minimum, in this case tharmection, proposed
in Ref. ((0) and described at the end of sectids, is used. In our simulations
we have used.2 as a threshold value for theparameters that rules the stability
of the SRH optimization (see secti@n3). This has achieved a fast and stable
convergence of the wave-function.



Chapter 6

Preliminary results on high pressure
hydrogen

6.1 Comparison with previous calculations

In order to check the quality of our trial-function we comedithe energy and the
variance on different configurations with the ones obtamsidg other functional
form for the trial wave-function®; 37). In the table6.1the energy and the vari-
ance for a BCC lattice with6 hydrogen is reported. As one can see our wave
function gives a very good energy. The variance is not so legvthis is probably
due to the lack of back-flow correlation or to the energy optation.

Moreover we compare the energies and variances obtainedferedt con-

Table 6.1: Total energies in variationak(,;-) and diffusion Epyc) Monte
Carlo calculations for 16 hydrogen atoms in a BCC lattice st R31 and T=0
(i.e. frozen ion positions). The energies aréHartreefor atom.

WEF Ev e o e Epyc
SJ 20.4742(2) | 0.0764(2)| -0.4857(1)
SJ3B 20.4857(2) | 0.0274(2)| -0.4900(1)
LDA -0.4870(10) -0.4890(5)
JAGP -0.4871(5) | 0.0700(1)| -0.49019(5)
JAGP — reduced | -0.4846(2) | 0.067(1) | -0.4880(1)
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figurations generated with the CEICM methd@].(In the figure6.1 the first ten
configurations are obtained at= 2000K. Then the system is cooled 500 K
and it starts to clusterize. If we compare the wave-functbiolzmann et al.
(8) with the JAGP wave-function we can see that the latter omesgan accurate
description of both the liquid and the cluster phase. Thauis to the resonating
nature of the JAGP trial-function that allows to describe lilquid phase through
resonating bonds among different atoms.
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Figure 6.1: Energy per atom of 16 hydrogen atoms at Rs=1.Blileéed on con-
figurations obtained by CEIMC with the methd8).( The first 10 configurations
are in the atomic liquid phase at 2000k while in the last tensystem is forming
clusters at T=500.

Then we compared the pressure obtained by using the GLQ itrehnob-
tained after equilibration at given temperature and dgneitth both Gas-Gun
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6.1 Comparison with previous calculations
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Figure 6.2: Variance per atom of 16 hydrogen atoms at Rs=daBdulated on
configuration obtained by CEIMC with the meth@).(The first 10 configurations
are in the atomic liquid phase at 2000k while in the last tensystem is forming
clusters at T=500.
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Table 6.2: Pressure at different temperatures and desisitiée report also the
pressure obtained with Gasgun experimét (ith Silvera-Goldman empirical
potential model ) and CEICM method®) atI" point. The pressure are in GPa.

T T | Gasgun| S-G | CEICM-VMC | CEICM-DMC | GLE-VMC
2.202 | 2820 | 0.120 | 0.116 |  0.105(6) 0.10(5) 0.144(8)
2.1 [ 4530 | 0234 | 0234 0.226(4) 0.225(3) 0.246(9)
1.8 | 3000 - 0.528 - 0.433(4) 0.410(8)

experimental results and numerical simulations done with CEICM metha@jl (
In the table6.2we report the pressures calculated for different densatiestem-
peratures. The pressure was obtained as explained inséciio

As it is shown the combination of GLQ with the JAGP wave-fumetprovides a
good agreement with the experimental values already wishstinall size?.

6.2 Pair Correlation Functions

In this section we report the proton-proton pair correlatfanctions for differ-
ent densities and temperatures obtained by using the GU@itpee. The pair
correlation function is defined (see Allen TildesI®g)) as:

o(r) = 73 (350 — ) 6.1)
J#

The pair distribution function is a useful property becatiggovides insights
for the liquid or solid structure. We compared the obtainestgn-proton distri-
bution functions with the ones reported in Ref; 99) for different densities .

Hohl et al. (1993) have performed DFT-LDA simulations at rd.#8 and
T=3000K, the resulting proton-proton distribution furmcts are compared i.3.
The lack of accuracy of Local Density Approximation (LDAsed by Hohl et.

1 In the Gas-Gun experiments extraordinarily high pressaresreated by the gas gun, oc-
curring during explosions. The high pressures of a shockewagke materials denser and heat
them to thousands of degrees.

°Notice that our calculations are donelapoint. Moreover we used 32 atoms and this does

not fulfill the closed-shell condition increasing furthbetsize effects.



6.2 Pair Correlation Functions
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Figure 6.3: Proton-proton correlation function, g(r), &=R.31. The GLQ and

CEIMC have used a periodical simulation box with 32 atomslevhiohl et al.
with 64 atoms. All the calculations were performed for a &rigpoint ().
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Figure 6.4: Comparison of the proton-proton correlationdtion, g(r), at Rs=2.1
and T=4350 obtained with different methods CEIM&) (7) and GLQ. All the
simulations were performed with 32 atoms for a singleoint (I').
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6.3 Another possible phase in liquid hydrogen

al, and the small size, we simulated, can account for theréiffces in the location
of the peak. The discrepancy between CEIMC and GLQ is not algaresent. It
can be explained by the nature of the wave-function used IC@Ehat does not
describe well the molecular disassociati@n (Nevertheless at densifys = 1.31
the inter-atomic distances are comparable with the tygicalding length of the
hydrogen molecule and we have found a tendency to filamemigoon in agree-
ment with the results of Hohl and Ceper§9).

6.3 Another possible phase in liquid hydrogen

The Resonant Valence Bond state has been shown to desarirataty frustrated
spin systems. It appears that in many systems supercontjyctirealized when
the system in the normal state is quite close to metal-insuteansition even in
presence of strong disorder, see Relf0@. The large mass difference between
ions and electrons leads, in a good approximation, to twiindisdynamics. This
allows us to consider always the electrons in the groune stfed disordered ionic
system at finite temperature, and from this point of view itsignilar’ to an av-
erage on disorder. Following this hypotheses we tried tdysthe possibility of
stable superconducting phases driven by correlation d¢tm$iee metal-insulator
transition and solid-liquid transition. Moreover as in Iigjc superconductor, we
expect that due to the small size of the Cooper pair a supdumive state can be
more stable close to a disordered phal#).

In order to detect superconductivity we have calculatedctirelensation energy
on different configurations in the liquid phase, with VMC éDMIC. The conden-
sation energy, in a variational scheme, is defined as thggdéference obtained
between the best Slater determinant, the normal state,rendGP. In order to
estimate the condensation energy we have reduced the rathle @lairing ma-
trix to N/2. In such limit the pairing determinant is equivalent to at&lane,
as shown in%). We optimized the Slater wave-function on given configora
and we found a non-zero condensation energy (see figg@yenamely a gain in
energy given by allowing pairing within a variational arsaft present we do
not even know whether this gain in energy is macroscopic fussa finite size
effect even a the VMC level. The corresponding energy gditgioed in this way,
certainly overestimate a possible true condensation grukrg to a real supercon-
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ducting ground state for high pressure hydrogen. In facvdrational approach
is certainly biased towards superconducting phases ewargkhrecently in the
2D Hubbard model there are other evidences of supercomdugtiase from non
variational approached Q2.

As shown in the famous paper of Yan$j0@d a peculiar property of supercon-
ductors is the Off-Diagonal Long-Range Order (ODLRO) ekkeith by the re-
duced density matrices in the coordinate space repregan{a03). For Fermions
ODLRO corresponds to the appearance of an eigenvalue whalbsswith the
number of particles in the two-body density matrb0Q):

po(wr, w212y, 25) = (Unla™(z1)a™ (2)a(z))a(xs)Tn) (6.2)
1 N(N —1
Trpy = §/p2(x1,x2;x1,xz)dx1dx2= %, (6.3)

where N is the number of particles. In a translational invarianteys ODLRO
implies for the two-body density matrix the following asytapc behavior:

pa(2, Th; w1, o) = aof (T — @) f (21 — @) (6.4)

for |z; — xo, |2] — 25| < and |z — 2| — (6.5)

wherea/N is the pair condensate fraction agds the size of the pair defined
by the pairing functionf. The functionf is zero for large separation; — 5|
and is~ 1/V'/2 for microscopic separation far, andz,. In order to estimate
the condensate fraction, following De Palo et &l04), we resort the two-body
density matrix to the projected density matrix:

1
h(z,0,¢) = N/d$1d$2/)2($/1 + , 1y + 2521, o) (6.6)

which tends tax in the large x limit. The presence of non positive eigenvsline
the A matrix, see figurés.6, led us to investigate the presence of non s-wave su-
perconductivity. Therefore we also evaluatgd:, 0, ¢) as a function of rotations
angled, ¢ of the electron pair in order to investigate the possibitifydifferent
symmetries.




6.3 Another possible phase in liquid hydrogen

A simple estimator ofi(x, 0, ¢) is given by

/ /
1 Wi(71, 72, 0y Ty ey 1)

h(z,0,¢) = M. W(ry,...,r)

¢ i<j{ri; <&}

(6.8)

wherer;,r’ is an electron pair translated efand rotated of), ¢, and M. the
number of pairs translated. A cutdffis introduced to speed up the calculation
excluding contributions coming by pairs of far electronattio not contribute to
the ODLRO because the pairing is short range. We have vetliigdthe cutoff
used does not effect the final result. In practice, for eachvpa generate a few
translationse uniformly distributed in the simulation box and, for betstatistics,
we also average over all pairs with the condition< &.

We argue the possibility of a non s-wave symmetry in the ODLRBEe figure
6.7 and6.8. Unfortunately the size of the studied system is too smatjite a

conclusive answer.
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Figure 6.5: Variational and Diffusion Condensation Engogy atom
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Eigenvalues of lambda matrix

5 T T T T T T
=1 ——
M
i =4 ——
4 I=5
1=6
=7 —
=8
3T =9 —— 7]

0 2e-14 4e-14 6e-14 8e-14 le-13 1.2e-13 1.4e-13
S

Figure 6.6: Eigenvalues of the matrix for 16 hydrogen atoms at Rs=1.31 and
100K as function of the simulation time
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ODLRO for 16 hydrogen at Rs=1.31
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Figure 6.7: Off-Diagonal Long Range Order for 16 hydrogemad at Rs=1.31
and 100K, in a box of sizé = 5.3211, for = 0 as function of the distance


Figs/odlro16.eps

82 Preliminary results on high pressure hydrogen

ODLRO for 54 hydrogen at Rs=1.31
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Figure 6.8: Off-Diagonal Long Range Order for 54 hydrogeama at Rs=1.31 at
100K in a box of sizd, = 7.9817, for # = 0 as function of the distance
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Chapter 7

Conclusions

In this first part of this thesis, we have proposed a new kinda&function the
JAGP for QMC. We have tested this wave-function on simpleenaar systems
where accurate results were obtained. Within this formamhatt was possible
to recover a large amount of the correlation energy at thaatianal level with
a computationally very efficient and feasible method. Indegthin the JAGP
ansatz, it is sufficient to sample a single determinant wheading dimension
scales only with the number of electrons. Moreover the piggrbetween the Jas-
trow and the geminal part has been shown to be very effectiadl cases studied
and particularly in the non trivial case of the benzene madkcOnly when both
the Jastrow and the AGP terms are accurately optimizedhegahe AGP nodal
structure of the wave function is considerably improvedalt the Jastrow factor
is an important ingredient because: it takes into accountdbal conservation of
the charge around each molecule; it allows a fast convegggnihie basis set for
the determinant because the electron-electron and theaietucleus cusp con-
ditions are satisfied. Nevertheless, in some cases, asdtamiceBe,, the used
basis set was not sufficiently large. Anyway all results enésd here can be sys-
tematically improved with larger basis set. Moreover wevebo that, by using
the Stochastic Reconfiguration optimization, it is possiial perform geometry
optimization as well, and obtain very accurate geometoeshfe molecules stud-
ied.

In the second part of the thesis we applied the JAGP waveimto study high
pressure hydrogen. The JAGP wave-function is a cruciakidigint to study cor-
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relation effects. In fact, as it is known from lattice modeligh electronic re-
pulsion, it is not possible to obtain a superconducting gebstate at the mean-
field Hartree-Fock level. Instead as soon as a correlatétbwaterm is applied
to the BCS wave function (equivalent to the AGP wave functomomentum
spaceBd)), the stabilization of a d-wave superconducting ordeapaater is pos-
sible. Furthermore the presence of the Jastrow factor cahtgtively change the
wave function especially at one electron per site fillingcoyverting a BCS su-
perconductor to a Mott insulator with a finite charge dd)g). When the charge is
locally conserved the phase of the BCS-AGP wave-functiomoghave a definite
value and phase coherence is correctly forbidden by theodagctor.

In the second part of the thesis we studied the hydrogen tbabe transition be-
tween the molecular solid to the atomic one, where it is etquba metal-insulator
transition due to the closure of the band gap. We introduceevatechnique to
perform a Car-Parrinello like dynamics on ions by QuantunnikéoCarlo noisy
forces. This technique opens the possibility to use QMC udysfinite temper-
ature system with a reasonable computational effort. Thebooation of GLQ
technique and JAGP wave-function has allowed us to studgléwtronic pairing
structure during the nuclear motion. We have observed a raaltbehaviour
on the eigenvalues of thie matrix, see figurés.6. This has led us to study the
Off-Diagonal Long Range Order in this system. The study ef @DLRO evi-
dences a non conventional superconductivity. Becauseedaflissical nuclei, this
superconductivity can be due only to correlation effectsdattice models used
to describe High Tc superconductor (see for instadO€)j. Moreover our results
showed that the dominant channel for superconductivity byot be s-wave.
Unfortunately the small size of the systems studied doesmt a conclusive
answer. In fact as for lattice models, a finite size scalingely difficult to per-
form (107). However motivated by recent results obtained on lattiodefs using
renormalization groupl(02) we are planing to study larger systems to clarify our
results. This implies the solution of some technical protdeand the reduction of
the size effects as discussed in the following.

The new advances in this thesis can be summarized in thragspai new highly
correlated wave-function; a new technique to study finitegerature system with
QMC; and the possibility, combining the two previous p@niy study exotic
phases due to electronic correlation effects.
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7.1 Future developments

e Reduction of the number of parameters
In the present implementation the JAGP wave-function isipetrized with
an exceedingly large number of parameters. In fact botherthihee-body
and in the pair determinant the number of coefficieniiscreases ad/ (/N —
1)/2whereN is the number of orbitals in the basis set. So even for a system
with only 54 hydrogen atoms we have to optimize abd0i0 parameters.
Although it is still possible (using the strategies showedChapter 6, to
optimize this wave-function following the ion dynamic withreasonable
accuracy the computational cost) the amount of memory meealevork
with so large matrices make impossible to extend this ambréa system
larger than 54 protons.
At this stage we are testing different strategies to overctims problem:
the most promising is to use a parametric form for kheefficients that, to
a first approximation, can be chosen to be dependent only theratomic
distances.

e Improving the wave-function optimization.

Because QMC calculation are very computer demanding, osi¢ohaccel-

erate the ionic dynamics as much as possible. But this isosstiple up to a
certain threshold otherwise the optimization procedureisable anymore
to follow the Bohr-Oppenheimer ionic dynamics. In order @ome this

difficulty it is possible to change the optimization procesltio converge
not to the minimum of the current ionic configuration, but ®ds close as
possible to the one of the following ionic configuration. approach can
be partially realized with the information we have from theddian matrix,
and should allow the use of much larger time steps in the GLE.

e Size effects and TABC.
The computational cost of the Quantum Monte Carlo integratioes not
allow to study very large system. In order to make the QMC cetitipe
one has to reduce as much as possible the size effects. Theftaets
derive from the kinetic and the potential energy. We are ipigmo apply
the Twisted Average Boundary Conditior&) to our system using a Twist
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sampling in such a way to integrate dynamically the boundaryditions
during the simulation. Moreover in these years differemategies were
proposed to reduce the finite size effect due to the longeg@oagential, and
we are planing to use some of these stratedios)(



Appendix A

Re-sampling methods

There is a simple motivation to use re-sampling methodsadh Iet us consider
a set of independent and identically distributed data saswplof an unknown
probability distributionF':

Xl,Xg,...,XnN F (Al)

We can compute the sample average- Y | z;/n, and then we can estimate
the accuracy of using the standard deviation:

n

&= J ﬁ > (@i — 1) (A.2)

i=1

The trouble with this formula is that it does not, in any olmsoway, extend to
estimators other than. For this reason a generalized versiomo? is introduced
such that it reduces to the usual standard deviation wheahbgen estimator is
the average.

A.1 Jackknife

Now we briefly describe how it is possible to obtain the staddieviation of
a generic estimator using the Jackknife method. For sintyhee consider the
average estimator. Let us consider the variables:

nr — T; 1
T() = L= 3 A.3
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wherez is the sample average;; is the sample average of the data set deleting
theith point. Then we can define the average pf

T = Z a:(l-)/n. (A.4)
=1
The jackknife estimate of standard deviation is then defased
GracK = n_li:(j-—j )2 (A.5)
JACK = 0 (@) ) '

=1
The advantage of this formula is that it can be used for arniynasbr, and it re-
duces to the usual standard deviation for the mean valuaasi.

In this thesis we always used the Jackknife re-sampling ogettHere we
want to show that the connection between the Jackknife aotthanvery used re-
sampling method the Bootstrap. Consider a generic estmiéto evaluated on
set of datar, x», ..., z,, Of the unknown distributior’. Let us take ae-sampling
vector

P* = (P}, P},...PY) (A.6)

n

such that
P >0

>
=1

in other words, a probability vector. We can re-weight outadsample with the
vector P* and then evaluate the estimatoon the re-sampled data:

0* = 6(P*) (A.7)
The difference between Bootstrap and Jackknife is in thecehaf this re-sampling
probability vector. In the Bootstrap we use:

1 1 1
PY = (—, — —) (A.8)
n n n
while in the Jackknife
1 1 1 1
P(Z) - 7—7"'70a gy . (Ag)
n—1mn-1 n—1 n—1

The estimate of the standard deviation is then given byAe®).for a good discus-
sion about Jackknife, Bootstrap and other re-sampling atstisee Ref.109).



Appendix B

Local Energy and its derivatives

B.1 Kinetic Energy

To evaluate the kinetic energy we rewrite the the kineticajme as:

Civie wime (Vo)

2 v 2 2 (B.1)
Because our trial-function is made as product of differentis:
U =elelP (B.2)

we can rewrite the kinetic energy through gradients andiziph of the logarithm
of each term, namely:

nv = J(’f‘ij) —|—T(Tz‘,7"j,7"z‘j) +InP
- . . VP
Vihtv = VJ(’I“Z]) + VT(’I“Z‘, Tjs rij) + ?

- 2
’p P
VAW = V2J(ry) + V2T (rs,rj,1m5) + VT N (%) =

B.1.1 Derivatives of the Kinetic Energy

We want to calculate the derivatives of the Kinetic Energgpext to a variational
parameter of the wave-function:

OV 9, 0 (o 2
e = 5. Vi 1n\p+%(viln\11) (B.4)
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usingB.3 we have that:

ﬁvfln\p = Q(V?lnerLV?lneT—l—VflnP) (B.5)
oa oa
B L A ey o
and
3(6-111\11)2:22 9 (VT VIT £ Vi P) | (VT 4+ VT + Vil P)
aa 1 — aa 7 7 7 1 1 1
(B.6)
For the pairing determinant the terms we have to evaluatéil
0, o,viP  9,PV'P
- 2

0, 8,V2P  9,P V2P V.P\ 8,P 29, VEPVIP
gai P P P+2<P>P_2;P P

So to evaluate the gradient of the local energy we need oridyda these vectors:

0.P 9,V,;P 9.,ViP

P p ' p (B.7)
B.2 Pairing determinant
Let us define the matrix;; as:
Aij = O(ry,ry) = Z ALm®1(1i) Pm (1) (B.8)
lm

wherei are coordinates of spin up electrons andf spin down electrons. For
polarized system is possible extend the definition of theigahwave-function.
This generalization was first proposed by Colembtd. In practise ifNT > N!
we can define &'z NT matrix A;; in the following way:

Ay = (. ri)forj=1N' (B.9)
= ¢;(r])forj=N'4+1,NT (B.10)
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When we move an electron to ratio between the old and the nesvdimant
will be given for a spin down electron:

|A(’f‘l’,7’;€)| - Z(I)(TZ',T;CHA(TZ-,TIJ‘A;]CI

‘A(Thri;)‘ _ R -1

Alrr)l zi:@(r”r’“m““

[A(ri, r)| Vo iy A=l

e - S st e

and for spin up:

Al )l = Y @) [, )| Ay

k

= > o(r,m) Ay

k

[ACri, )|
RG]

For updating the inverse matrix—!, used here, after a move we follow the simple
formula used for the Slater determing88) with indices that depend from the spin
of the electron.

Gradients and Laplacian

Using the formuleD.3 and the fact the only a column or a row may depends from
a given electronic coordinate we obtain:

Viin|A| = Z Vid(r,r) ALl
k

Viln[A] = > Vib(ri, ri) Ay (B.12)
k
where:
Vi(rire) = Y MawVin(r)om(r) (B.13)
lym
Vib(ri,re) = > N Vidi(ri) b (1) (B.14)
Im

for spin down we have to exchangwith & in all these equations.
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The logarithmic derivatives

In pairing trial-function the variation of a parameter ihves all terms of the ma-
trix and so usindg.3 the logarithmic derivatives will be:

Olndet(A) dIndet(A) Oa;; oP(ry,ri) 4

i i

If only the k-th orbital depends by we obtain:

0P (ri, 1)) 8gz§ 7‘Z 8¢
a5 - mem a memm (r)  (B.15)

If 5 is one of the\ parameter the derivative will be:

8@(73, Tj)

o, 2a(ri)ou(rs) + du(ri)da(r) (B.16)

because\ matrix is symmetric.

Second derivatives

In the general case in which all elements of the matrix defemd the parameters
3, ~ the derivative is:

2 , 2
L o*A 1 Z . J|Al  Oany Oajpm, N ﬁz 0 |A| Pany (8.17)

[A[0B0y ~ JA] <~ daudajm 05 0y — Da,, 050
now using equation®.3andD.5
1 8 ‘A| aajm 8ank 1 1 8ank 8ajm
- = ATA-L AT A
|A| nkzj:m danr0a;, OB Oy n%:m( k= mg fm "J) op 0Oy
1 O |A| D%y 1 Pagy,
— = A B.18
A2y 05— 2 o50, (818

where the derivativeda,,;, /0, da,./0F are given byB.15 B.16, B.14. The
second derivatives can be evaluate frBr8.
If 5 and~ are two)\,;,,, usingB.16the second derivative is obviously zero.
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If 5 and~y are both orbital parameters, and for examplektheth orbital depends
from 5 andl — th orbital from~, usingB.15we have:

Po(ri,ry)  Odk(r:) Ogu(r)) O¢1(ri) Obn(r;)
gy - Mos oy T ag oy O
Oy (ri) Ou(ry)  Ogu(ri) O (r;)
Akl( 5 873 + 35 87]) (B.20)
(B.21)

because\,; = \j;.
If 5 and~ are parameters of the same orbital we have:

02®(ry, 1)) 8 gbk T) 8 Qbk

If v is one of the\ parameter, using the fact thematrix is symmetric we obtain:

a¢a (Tj )
op

82(I)(TZ', Tj) . 8¢a(7‘i>

e (B.23)

o(ry) + do(ri)

Derivatives of the Local Energy

To evaluate the derivatives of the local energy we need twutate the following

terms: B
9.V |Al 0,V |A]

) (B.24)
|A| Al
we obtain:
aaﬁi |A| 1 0 |A‘ 1 a |A‘ .
= 1Al =5 Vi® ¢ B (7,
‘A| |A‘ 7;” aama&zmv (rn,rl)ﬁ (rla rm + Z |A‘ aam a Vz (TZ, ’l“n)

= > (AAL = AT AL ) V(1 1) 0, (. ) + Y A10,Vi0(r, )

and a similar formula for the derivative of the laplacian. olily the orbital%
depends by, we have:

3a§iq)(7“i> 7’3’) = 3{16@1@(7’0 Z )\kmﬁbm(rj) + aacbk(rj) Z )\mkﬁﬂm(ﬁ)
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B.3 Three-body

In the same spirit of the pairing determinant we built a tHbeely factor as:

Nejec
U = exp (Zma,m) (B.25)

4,7
Norb

When you move an electron the ratio between the two three-body factor is given

T = e (Z [Z An®r(73) (60(r) = Bn(11)) + Im(ri)Pu(r2) — bm(ri)on () )

(7#Fk)

| (B.27)
and if you accept the move to update the value of three-bodyhave only to

updateN,,; orbitals.

Gradients and Laplacian

The gradients and laplacian of the logarithm of three-bedytare given by:

VilnU =Y > X Vidm(ri) én(rs) (B.28)
VilnU => Y XnVidm(ri) dn(r)) (B.29)

Three-body Derivatives

The derivative respect to a parametey of an orbitalm is given by:

olnU _ %:Zl: ()\lmgbl(’l“i)a%m(rj) + )\mla¢m(ri) Cbl(rj)) (BBO)

oa,, Oy oa,,

and the derivative respect 1q, is

aalfa(j = 2_ 3a(ri)ou(rs) + 64(7i)alrs) (B.31)

because\ matrix is symmetric.
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Derivatives of the local energy

It is very simple to evaluate the terms appearin@if andB.6in fact usingB.29
andB.28 and considering only the: orbital dependent by the parametewe
obtain:

aaﬁk U = Z Z )\mnaaﬁkqu(rk)asn(rj) + Z Z )\nmﬁkasn(rk’)aaasm(rj)

0aVi nU = Z Z )‘mnaavqum(rk)asn(rj) + Z Z )\nmviasn(rk)aaasm(rj)
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Appendix C

Cusp conditions

When two Coulomb particles get close, the potentiallhassingularity. We want
modify the wave function in such a way to cancel this singtyaket us consider
the case of an electron close to a nucleus, the Schrodiggeatien reduces to:

z
{—@VQ = —e} v = By (C.1)

where Z is the nuclear charge, notice that we used rescaled distgsee Eq.
4.23. Writing the first term in spherical coordinates, we get

1¢// 1 5 w/ B
‘m‘ﬁ( bt )_w €2)

To cancel the singularity at smallthe term multiplying byl /r must vanish. So

we have

%w’ = —7Lé* (C.3)

If » = e=°" we must have = Z Le?. For the case of two electrons, when they are
close each other the Schrodinger equation, using relebwedinates, = r; —rs,
reduces to
Vv, e?

{_ 2 " T
Electrons with unlike spins have an extra factor g2 in the cusp condition com-
pared with the electron-nucleus case. So we have—c*L/2. In the antisym-
metric case, the electrons will be in a relatjvstate, reducing the cusp condition
by 1/2, soc = —e%L/4. Since the antisymmetry requirement keeps them apart

} Y =FEy (C.4)
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anyway having the correct cusp for like spin electrons l¢adsvery little in the
energy or the variance(see Re39.



Appendix D

Determinant derivatives

Consider a matrix4, we want find a simple way to express derivatives of the its
determinant respect to the matrix elements The determinant can be expanded
in the elements;;:

det A = |A‘ = Zaij(—l)HjCji (Dl)

J
whereC;; is the minor of the matrix4 respect to the element; and therefore

does not depend explicitly by the elements of the 4w So the derivative with

respect tay,; will be:
oA _

e (1) (D.2)
J
and for the logarithmic derivative we have:
Oln|A , 1 _
aal‘w_ l_ (—1)’“*30le = A (D.3)

We want to find a simple relation to evaluate second derigatnf the determinant.
We write the relation
1 0|A|
aij Al = Aij 7w = Oik (D.4)
zj: I %5k Z ]|A|0akj

J
if we derive this equation fod;,, we obtain:

9 ) ~10|4|9]A] 1 A 104
dayy, ( j o ) 2j:ak] <|A|2 dai; Oy, " | A] Oai;Oam, oty Oayy

S, —10JA[9|A] 1 Al 1 9|4]9|A]
N |A? daij Oar, — |A] daiOar, — |A|* Oay; Oay,

J

)
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where we substitute thg, with the eq.D.4. Because of this equation is zero for
all a;, this means that the expression in parentheses is zero, isnddlus to:

1 924

TA] Dagndar, A AL — AL AL (D.5)
nUUjm



Appendix E

Error Analysis due to finite time
step in the GLE integration in a
simple case

When we discretize the equatiGnl3we introduce an error due to the finite in-
tegration time step. Following the idea of Ref.1(11) we can evaluate this error
analytically in the case of a simple harmonic oscillatorn€ider the equation:

T

A

2" (T4 ez +e Mo = (1 — e ) (W™ + 7). (E.1)
We are interested in a statistically stationary processsamie proceed to evaluate
mean average energies and correlation functions as funofie. To do so we
multiply the equatioric. 1for ™ andz"~! , respectively, and then take the average.
We obtain the following pair of equations:

7'(4)2

("™ + {T(e_” -1 —(1 +e‘”)} (™2™ + e M {z" ") = 0

2

(1) — (14 ) (e ) + [_

T (e—)n'_ 1)+6—)\7':| <xn—lxn—1> = 0

Becuase we are interested in the equilibrium distributiwa, can assume that
(xrz" 1) = (z"Tz") and (z" 1"t = (a"z™) = (2" 'z" ). Thus we have
three unknown quantitigs" ™ 'z"),(z"z") and(z""'z"~!). To get a third relation
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among this quantities we square the Eglto obtain the relation:

2 {T—“ﬂ(e—” —1)—(1+ e_’\T)] (14e7) (z"Ha™)

A
Tw? 2
+ [1+e 7+ <T(1 —e M)+ (1+ e_’\T)) ] (z"z™)
—AT/, n+1, . n—1 7—2 —AT\2/,.n,.n
+ 2 (a" ):ﬁ(l—e ) (rr™y

After solving this equation system we can evaluate the pistieaind the kinetic
energy:

(Bpo) = gl (E.2)
xn_xn—l2

B = Lmmy - L) £

= %[(x”x”)—(x”x”_l)} (E.4)

It is easy to show that in the limit of smallthe potential and the kinetic energies
converge to:

(Brin) = %ka (1 + inTQ - 0(74)) (E.5)
(E) = %ka (1+0() +O() (E.6)

This show that at least in this simple model the impulse iratey leads to a
guadratic error irr in both kinetic and poterntial energy.
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