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Introduction

There is an oral tradition that says shortly after the Shrödinger equation was vali-

dated onH atom andH2 P.A.M. Dirac exclaimed that the chemistry had come to

an end. Fortunately some years later, in 1929, he added ”The fundamental laws

necessary for the mathematical treatment of a large part of physics and the whole

of chemistry are thus completely known, and the difficulty lies only in the fact that

application of these laws leads to equations that are too complex to be solved.”.

During the last 70 years, staring from the Thomas-Fermi theory, there were pro-

posed many ways to solve approximately the Shrödinger equation with several

electrons. In 1999 W. Kohn and J.Sham received the Nobel prize for the well

known Densitiy Functional Theory. They found an innovativeway to deal with

many electron system using a three-dimensional electronicdensity instead of a

3N-dimension wave-function. Their approach have opened the possibility to sim-

ulate thousands of different systems with an affordable computer effort.

Several other techniques, different from DFT, exist to dealwith the time-independent

Shrödinger equation with many electrons. The so colled Quantum Monte Carlo

(QMC) techniques (9; 10; 11) are some of the most accurate and efficient statisti-

cal methods for treating many body quantum systems. In the past they were used

to study different systems as quantum liquids (12; 13; 14), atoms (2), molecules

(15; 16), solids (17) and lattice models for strongly correlated electron systems

(18). Moreover QMC allows to include many important physical informations of

the system, such as cusp conditions, symmetries, exact limits, because it deals

directly with the many body wave-function. In this thesis wehave used these

techniques to study molecular systems by introducing a new highly correlated

wave-function (19).

Although QMC have led to great progress in understanding thezero temperature

physics of strongly correlated electron systems, there is no obvious way to extend
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it to finite low temperature. Even if there exist Monte Carlo techniques, as Path

Integral Monte Carlo, to study quantum system at finite temperature, they are lim-

ited to the high temperature regime.

In this thesis following the idea of Car and Parrinello we present a new approach

to study many electron systems at low temperature using a classical ionic dynamic

combined with a ground state QMC for the electrons. This method is then applied

to study high pressure hydrogen.

Hydrogen is the most abundant element in the universe. Despite the simple struc-

ture of hydrogen atom, it does not form the simplest solids orliquids. It has a

very complex phase diagram that has been widely studied by experimental (20)

and theoretical approaches (8; 21).

At low pressure hydrogen crystallizes as an insulating molecular solid. As the

pressure increase different molecular phases were encountered (20; 22). At higher

pressure electron would no longer remain in localized boundorbitals and would

instead delocalize. As predicted by the pioneering work of Wigner and Huntington

(1935), at extreme pressure, comparable with the ones present in giant planets, the

molecules of solid hydrogen will dissociate to form a mono-atomic metallic solid.

Despite the simple interaction, the structure of this solidhas been predicted to be

a simple hexagonal lattice (23). At higher density some theoretical models has

suggested that compressed hydrogen can form unusual two-component quantum

fluid, made by electrons and protons, at low and even zero temperature (24; 25).

Moreover a recent study (21) predicted a maximum in the melting curve between

solid and liquid in high pressure hydrogen, confirming the idea of a possible stable

quantum fluid phase at low temperature.

Motivated by the so reach phase diagram we decided to investigate the effects of

the correlation in high pressure hydrogen, and to this end, we decided to use a

resonating valence bond (RVB) wave-function together witha new technique to

simulate finite temperature systems. In the RVB approach thevariational trial-

function is written as an antisymmetrized combination of bonds. Each bond con-

tains two electrons shared by two orbitals. In fact after theoriginal proposal by

Anderson, there is now a large amount of numerical evidence that the simple

but general resonating valence bond (RVB) wave function contains just those in-

gredients missing in uncorrelated theories, so that the main features of electron

correlation can be captured by the variational RVB approach. Moreover from the
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computational point of view the remarkable feature of this approach is that several

resonating valence bonds can be dealt simultaneously with asingle determinant,

at a computational cost growing with the number of electronssimilarly to more

conventional methods, such as Hartree-Fock or Density Functional Theory.

Thesis outline

The thesis is organized as follows:

• In the first chapter we briefly review QMC methods mainly used in this

thesis, the Variational Monte Carlo. Then we introduce the pairing wave-

function used to study molecular and solid systems.

• In the second chapter two optimization methods, used in VMC,are pre-

sented: Stochastic Reconfiguration(SR) and Stochastic Reconfiguration with

Hessian acceleration (SRH). Advantages, limitations, tips and tricks are

shown for both of them.

• In the third chapter we show the results obtained by applyingthe paring

wave-function to different molecular systems.

• In the beginning of the fourth chapter we show how to generalize the pairing

function to study extended systems. Then we come back for a while to

technical aspects of simulation of periodic systems.

• In the fifth chapter a new method to simulate systems at finite temperature is

presented. This technique has allowed us to perform ionic dynamics using

noisy forces coming from Quantum Monte Carlo.

• In the last chapter we show preliminary results obtained on high-pressure

hydrogen, using our new technique. Moreover our results allowed us to

guess a new possible exotic phase in high pressure hydrogen driven by the

electronic correlation.
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Chapter 1

Quantum Monte Carlo and the

JAGP wave-function

1.1 Variational Monte Carlo

The VMC is a stochastic method that allows to evaluate expectation values of

physical operators on a given wave-function (see Ref. (26)). It is based on a sta-

tistical calculation of the integrals that involve the meanvalues of these operators.

〈A〉var =

∫

Ψ∗
T (R)ÂΨT (R)dR

∫

Ψ∗
T (R),ΨT (R)dR

(1.1)

whereR = (r1, r2, r3, ...rN) are the electron coordinates. Monte Carlo integration

is necessary because the wave-function contains explicit particle correlations and

this leads to non-factoring multi-dimension integrals. Notice that in the case of

the Hamiltonian operator, according to the variational principle, the expectation

value will be greater than or equal to the exact ground state energy. We can write

the integral1.1as:

〈A〉var =

∫

P (R)AL(R)dR

whereP (R) in a probability density, andAL(R) is the diagonal element associ-

ated to the operator̂A.

P (R) =
|ΨT (R)|2

∫

Ψ∗
T (R)ΨT (R)dR

(1.2)

AL(R) =
ÂΨT (R)

ΨT (R)
(1.3)
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We can sample the probability distributionP (R) using the Metropolis scheme

(27) and then evaluateAL(R) on the obtained configurations. Then using the

central limit theorem the integral can be estimate as:

〈A〉var =
1

M

M
∑

m=1

AL(Rm)

The sampling process continues until the desired statistical error on the expecta-

tion value of the operator̂A is reached.

The VMC algorithm is implemented so that only a single electron is moved at

each time. In this way only one column or one row of the Pair Determinant is

changed at each step. The new determinant can be computed inO(N) operations,

given the inverse of the old pair determinant. This inverse is computed once at the

beginning of the simulation and then updated whenever a trial move is accepted. If

the trial move is accepted, the inverse matrix is updated inO(N2) operations. This

trick makes the VMC sampling very efficient. Notice that the direct computation

of a determinant takesO(N3) operations.

1.1.1 Forces with finite variance

In VMC the expectation value of operators different from theHamiltonian is usu-

ally much less favorable and accurate than the one obtained for the energy. This

is due to two kinds of errors: first the statistical one due to the finite sampling

in the Monte Carlo integration that behaves as1/
√
N , whereN is the number

of sampling points and second the systematic error (”bias”)resulting from an ap-

proximated wave-function.

In order to understand the behavior of this errors we define the trial wave-function

error,δΨ = ΨT −Ψ0 , whereΨ0 is the exact wave function. In the case of the en-

ergy, applying the variational principle (see for instanceref. (28)), one finds that

the systematic error∆E goes asDeltaE ∼ O(δΨ2), where∆E can be represented

as:

∆E =
〈ΨT − Ψ0|H − E0|ΨT − Ψ0〉

〈ΨT |ΨT 〉
. (1.4)

Instead the statistical error is related to the variance of the operator on the trial

wave-functionΨT . For instance for the energy:

σ2(EL) = 〈(EL −Ev)
2〉Ψ2

T
. (1.5)
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Using the equality:

EL −Ev =
(H − E0)(ΨT − Ψ0)

ΨT
− ∆E (1.6)

it is easy to see thatσ2(EL) = O(δΨ2). Thus in the case of the energy both

these errors vanish asO(δΨ2). For any other operator that not commutes with the

Hamiltonian,Ψ0 is not anymore an eigenstate ofÔ and so the systematic error is

∆O = O(δΨ) while the statistical one isσ2(O) = O(1) (see Ref. (29; 30).

The situation is even worst if we consider atomic or molecular forces. In fact, let

us derive the potential energy in the respect to an atomic position:

F ν
A = − ∂

∂Rx
i

V (r1, .., rN ;R1, ..., Rm) = −ZA

M
∑

i6=A

Zi(R
ν
A −Rν

i )

R3
Ai

−ZA

N
∑

j

(~xj − ~Rν
A)

|rj − RA|3
,

(1.7)

the second term in the right-hand side of this equation is responsible for a infinite

variance contribution.

In order to overcome this problem Assaraf and Caffarel (31) proposed an original

and ingenious solution. DenotinĝO an arbitrary hermitian operator they showed

that is possible to define a new ”renormalized” operatorÕ such that:

〈Õ〉 = 〈Ô〉 (1.8)

σ2(Õ) ≤ σ2(Ô). (1.9)

The new operator̃O is obtained from the old one by adding toO another operator

with zero expectation value and finite variance, namely:

Õ = O +

[

H̃Ψ̃

Ψ̃
− H̃ΨT

ΨT

]

Ψ̃

ΨT

, (1.10)

whereH̃ is an arbitrary Hermitian operator, and̃Ψ is an auxiliary square-integrable

function. In the case of atomic forces, the simplest and effective choice forH̃ and

Ψ̃ is:

H̃ = H (1.11)

Ψ̃ = QΨT (1.12)

with

Qν
A = ZA

Nelect
∑

i=1

(xν
i − Rν

A)
∣

∣

∣
~ri − ~RA

∣

∣

∣

. (1.13)
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This particular form cancels the pathological part in the bare force1.7. The renor-

malized force reads:

F̃ ν
A = −ZA

M
∑

i6=A

Zi(R
ν
i − Rν

A)

R3
Ai

−
~∇Qν

A · ~∇ΨT

ΨT
. (1.14)

Notice that the infinite variance contribution in the bare force 1.7 no longer ap-

pears in the latter expression, indeed the new ”renormalized” force 1.14has now

a finite variance. The use of ”renormalized” operators has allowed us to evalu-

ate forces with a finite variance and to perform structural optimization and finite

temperature dynamics.

1.2 Functional form of the wave function

In both variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) (for

a review about DMC see Ref. (26)) the trial-function completely determines the

quality of the approximation for the physical observables.Because of this, it is

extremely important to choose carefully a flexible wave-function that contains as

much knowledge as possible of the physics of the system beingstudied.

In the first part of this thesis we proposed an highly correlated wave function

that is able to capture the major part of the correlation energy: The Antisymmet-

ric Geminal Product supplemented by the Jastrow correlation (JAGP). This wave

function is an extension of the Antisymmetric Geminal Product AGP, introduced

in quantum chemistry by Coleman (32):

ΨAGP (r1, ..., rN) = ÂΠ
N/2
i=1 Φ(r2i, r2i−1) (1.15)

whereÂ is the antisymmetrization operator. The AGP wave-functionis deter-

mined by the geminal, which is usually expanded in a one-particle basis:

Φ(ri, rj) =
∑

1≤l,m≤r

λlmφl(ri)φm(rj) (1.16)

wherer is the size of the orbital basis set. The geminal is then determined by

r(r− 1)/2 coefficientsλ. For instance, for the simple hydrogen molecules, using

only two orbitals as basic set, the AGP is:

ΨH2 = λ11φ
A
1s(r1)φ

A
1s(r2)+λ22φ

B
1s(r1)φ

B
1s(r2)+λ12φ

A
1s(r1)φ

B
1s(r2)+λ21φ

B
1s(r1)φ

A
1s(r2)

(1.17)
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whereΨH2 contains bonding and anti-bonding orbitals and so it is ableto repro-

duce the Heithler-London limit. Notice that AGP wave-function is similar to the

Gutzwiller BCS wave function used on lattice system (33).

The full JAGP wave-function is defined by the product of different terms, namely

one-body, two-body, three-body JastrowJ1, J2, J3 and an antisymmetric part (Ψ =

JΨAGP ). The first term is used to satisfy the nuclear cusp conditions, while the

second the electron-electron one. The third one is an explicit contribution to the

dynamic electronic correlation, and the latter is able to treat the non-dynamic one

arising from near degenerate orbitals through the geminal expansion. Therefore

our wave function is highly correlated and it is expected to give accurate results

on widely range of systems.

1.2.1 Pairing determinant

As it is well known, a simple Slater determinant provides theexact exchange

electron interaction but neglects the electronic correlation, which is by definition

the missing energy contribution. In the past different strategies were proposed to

go beyond Hartee-Fock theory. In particular a sizable amount of the correlation

energy is obtained by applying to a Slater determinant a so-called Jastrow term,

that explicitly takes into account the pairwise interaction between electrons.

On the other hand, within the Quantum Chemistry community the Antisymmetric

Geminal Product (AGP) is a well known ansatz to improve the HFtheory, because

it implicitly includes most of the double-excitations of anHF state.

Recently a new trial function was proposed for atoms, that includes both the

terms (2). In the first part of this thesis we extend this promising approach to a

number of small molecular systems with known experimental properties, that are

commonly used for testing new numerical techniques.

The major advantage of this approach is the inclusion of manyCI expansion

terms with the computational cost of a single determinant. For instance this has

allowed us to perform the full structural optimization of benzene without a partic-

ularly heavy computational effort on a single processor machine.

For an unpolarized system containingN electrons (the firstN/2 coordinates

are referred to the up spin electrons) the AGP wave function is a N
2
× N

2
pairing
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matrix determinant, which reads:

ΨAGP (~r1, ..., ~rN) = det
(

ΦAGP (~ri, ~rj+N/2)
)

. (1.18)

Here the geminal function is expanded over an atomic basis:

ΦAGP (~r↑, ~r↓) =
∑

l,m,a,b

λl,m
a,b φa,l(~r

↑)φb,m(~r↓), (1.19)

where indicesl,m span different orbitals centred on atomsa, b, andi,j are coor-

dinates of spin up and down electrons respectively.

Differently from the previous pairing function formulation (2), appropriate only

for simple atoms, here also off-diagonal elements are included in theλ matrix,

which must be symmetric in order to define a spin singlet state. Moreover this

formulation allows to easily fulfill other symmetries by imposing the appropriate

relations among differentλl,m. For instance in homo-nuclear diatomic molecules,

the invariance under reflection in the middle plane perpendicular to the molecular

axis yields the following relation:

λa,b
m,n = (−1)pm+pnλb,a

m,n, (1.20)

wherepm is the parity under reflection of them−th orbital.

An important property of this formalism is the possibility to describe explicitly

resonating bonds present in many structures, like benzene.A λa,b
m,n different from

zero represents a chemical bond formed by the linear combination of them-th

andn-th orbitals belonging toa-th andb-th nuclei. It turns out that resonating

bonds can be well described through the geminal expansion byswitching on the

appropriateλa,b
m,n coefficients: the relative weight of each bond is related to the

amplitude of the correspondingλ.

Also polarized systems can be treated within this framework, by using the spin

generalized version of the AGP (GAGP), in which also the unpaired orbitals are

expanded as well as the paired ones over the same atomic basisemployed in the

geminal (34).

Another important property of AGP wave-function is the sizeconsistency: if

we smoothly increase the distance between two regionsA andB, each containing

a given number of atoms, the many-electron wave functionΨ factorizes into the

product of space-disjoint termsΨ = ΨA

⊗

ΨB as long as the interaction between
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the electrons coupling the different regionsA andB can be neglected. In this limit

the total energy of the wave function approaches the sum of the energies corre-

sponding to the two space-disjoint regions. This property,that is obviously valid

for the exact many-electron ground state, is not always fulfilled by a generic varia-

tional wave function as for instance configuration-interaction (CI) wave-function.

Notice that this property is valid when both the compound andthe separated frag-

ments have the minimum possible total spin. This is precisely the relevant case

for hydrogen phase diagram studied in this thesis because wehave not studied fer-

romagnetic or partially ferromagnetic phases, that are notbelieved to be present

in the reasonable pressure-temperature range of hydrogen (for a discussion about

ferromagnetism in high-pressure hydrogen see Ref. (35)).

Now we want to highlight how it is possible to implement nuclear cusp con-

dition (see AppendixC) for molecular systems with a pairing wave-function. A

straightforward calculation shows that the AGP wave function fulfills the cusp

conditions around the nucleusa if the following linear system is satisfied:

(1s,2s)
∑

j

λj,j′

a,b φ̂
′
a,j(r = Ra) = −Za

∑

c,j

λj,j′

c,b φc,j(r = Ra), (1.21)

for all b andj′; in the LHS the caret denotes the spherical average of the orbital

gradient. If we impose that the orbitals satisfy the atomic cusp condition on their

atom, this equation reduce to:

∑

c(6=a),j

λj,j′

c,b φc,j(Ra) = 0, (1.22)

and because of the exponential orbital damping, if the nuclei are not close together

each term in the previous equations is very small, of the order of exp(−|Ra−Rc|).
Therefore in the first part of this thesis, with the aim of making the optimization

faster, we have chosen to use1s and2s orbitals satisfying the atomic cusp condi-

tions and to disregard the sum (1.22). In this way, once the energy minimum is

reached, also the molecular cusp conditions (1.21) are rather well satisfied. Later

in the second part of the thesis we have adopted a different and more efficient

strategy to the cusp problem as described in the following section.
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1.2.2 One body term

Another important term of our trial-function it is the one-body term. In fact as

pointed out in Ref. (36), it is easier to optimize a one-body term explicitly rather

than including more orbitals in the determinantal basis set.

Moreover, even if it is possible to satisfy nuclear cusp conditions (see AppendixC)

with the pairing determinant, this has to be done iteratively during the optimization

process adding constraints to the variational parameters or approximately disre-

garding the term of the eq.1.22. In order to solve efficiently this problem we

included nuclear cusp conditions explicitly in the one-body term, in the same way

of ref. (37):

J1(~r1, ..., ~rN) = exp

[

N
∑

i,a

(ξa(~ri) + Ξa(~ria))

]

, (1.23)

where ξa(~ri) orbital is used to satisfy the nuclear cusp conditions on nucleus

a:

ξa(r) =
−Zar

(1 + br)
(1.24)

and theΞ(~ria) =
∑

l λlψa,l(~ria) is a linear combination of atomic orbitals centered

on the nucleusa, and that do not effect the nuclear cusp condition. We have used

Gaussian and exponential orbitals such to have a smooth behaviour close to the

corresponding nuclei, namely as:

ψa,i(~r) − ψa,i(~Ra) ≃ |~r − ~Ra|2, (1.25)

or with larger power, in order to preserve the nuclear cusp conditions (1.24).

The basis setψa,i(~r) is the same used in the so-called three-body term that we are

going to describe in the following. The same kind of behaviorhas been imposed

for the orbitals appearing in the determinant. In this way the nuclear cusp con-

ditions are very easily satisfied for a general system containing many atoms, in a

simple and efficient way.

1.2.3 Two body Jastrow term

As it is well known, the Jastrow term plays a crucial role in treating many body

correlation effects. One of the most important correlationcontribution arises from
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the electron-electron interaction. Therefore it is important to use at least a two-

body Jastrow factor in the trial wave function. Moreover this term reduces the

probability for two electrons to be close, and so decreases the average value of

the repulsive interaction, providing a clear energy gain. The two-body Jastrow

function reads:

J2(~r1, ..., ~rN) = exp

(

N
∑

i<j

u(rij)

)

, (1.26)

whereu(rij) depends only on the relative distancerij = |~ri − ~rj| between two

electrons and allows to fulfill the cusp conditions for opposite spin electrons as

long asu(rij) → rij

2
for small electron-electron distance. The pair correlation

functionu can be parametrized successfully by few variational parameters.

We have adopted a functional formu proposed by Fahy (38), that we found

particularly convenient:

u(r) =
r

2(1 + br)
, (1.27)

where the variational parameterb has been optimized for each system. In this

functional form the cusp condition for anti-parallel spin electrons is satisfied,

whereas the one for parallel spins is neglected in order to avoid the spin con-

tamination (for more details about spin contamination see Ref. (39) ). This allows

to remove the singularities of the local energy due to the collision of two opposite

spin electrons, yielding a smaller variance and a more efficient VMC calculation.

1.2.4 Three Body Jastrow term

In order to describe well the correlation between electronsthe simple two-body

Jastrow factor is not sufficient. Indeed it takes into account only the electron-

electron separation and not the individual electronic position ~ri and~rj. It is ex-

pected that close to atoms the correlation effects deviate significantly from the

translational invariant Jastrow. For this reason we introduce a factor, often called

three body (electron-electron-nucleus) Jastrow, that explicitly depends on both

electronic positions~ri and~rj . The three body Jastrow is chosen to satisfy the

following requirements:

• The cusp conditions set up by the two-body Jastrow term and bythe one-

body term are preserved.
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• Similarly to the two-body we do not include any spin dependency in the

three-body Jastrow. In the way the wave-function remains a spin singlet.

• Whenever the atomic distances are large it factorizes into aproduct of inde-

pendent contributions located near each atom, an importantrequirement to

satisfy the size consistency of the variational wave function.

Analogously to the pairing trial function in Eq.1.19we define a three body

factor as:

J3(~r1, ..., ~rN) = exp

(

∑

i<j

ΦJ (~ri, ~rj)

)

ΦJ(~ri, ~rj) =
∑

l,m,a,b

ga,b
l,mψa,l(~ri)ψb,m(~rj), (1.28)

where indicesl andm indicate different orbitals located around the atomsa andb

respectively. Each Jastrow orbitalψa,l(~r) is centred on the corresponding atomic

position ~Ra. We have used Gaussian and exponential orbitals multipliedby ap-

propriate polynomials of the electronic coordinates, related to different spherical

harmonics with given angular momentum, as in the usual Slater basis.

The chosen form for the 3-body Jastrow (1.28) has very appealing features:

it easily allows to include the symmetries of the system by imposing them on

the matrixga,b
l,m exactly as it is possible for the pairing part (e.g. by replacing

λa,b
m,n with ga,b

m,n in Eq. 1.20). It is size consistent, namely the atomic limit can be

smoothly recovered with the same trial function when the matrix termsga,b
l,m for

a 6= b approach zero in this limit (see Ref. (15)). Notice that a small non zero

value ofga,b
l,m for a 6= b acting on p-wave orbitals can correctly describe a weak

interaction between electrons such as the Van der Waals forces.



Chapter 2

Optimization Methods

QMC calculations crucially depend on the quality of the trial-function, and so it

is essential to have an optimized wave-function as close as possible to the ground

state.

The problem of function optimization is a very important research topic in numer-

ical simulation. In QMC, in addition to the usual difficulties to find the minimum

of multidimensional parametric function, the statisticalnoise is present in the es-

timate of the cost function (usually the energy), and its derivatives , required for

an efficient optimization.

Different cost functions and different strategies were used to optimize a many-

body trial-function. Usually three cost functions were used in QMC optimization

energy, variance or a linear combination of them. In this thesis we always used

energy optimization. The variance optimization have the advantage to be bounded

by below, to be positive defined and its minimum is known, but different authors

Ref. (40; 41; 42) recently showed that the energy optimization is more effective

than the variance one.

There are different motivations for this: first, usually oneis interested in the low-

est energy rather than in the lowest variance in both variational and diffusion

Monte Carlo; second, variance optimization takes many iterations to optimize

determinant parameters and often the optimization can get stuck in multiple local

minimum and it suffers of the ”false convergence” problem (41); third energy-

minimized wave functions on average yield more accurate values of other expec-

tation values than variance minimized wave functions do (40).
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The optimization strategies can be divided into three categories. The first strategy

is based on correlated sampling together with deterministic optimization methods

(43). Even if this idea yielded very accurate results for the first-row atoms (43),

this procedure can have problems if parameters affect the nodes, and moreover

density ratio of the current and initial trial-function increases exponentially with

the size of the system (44). In the second strategy one use a large bin to evaluate

the cost function and its derivatives in such way that the noise can be neglected

and deterministic methods can be used (see for instance (45; 46)).

Third approach, the one we used, is based on an iterative technique to handle di-

rectly with noise functions. The first example of these methods is the so called

Stochastic Gradient Approximation (SGA) Ref. (47), recently used also for struc-

ture optimization Ref. (48).

In this thesis we have used two new optimization methods the Stochastic Re-

configuration (SR) method (15; 49) and Stochastic Reconfiguration with Hessian

acceleration (SRH) (50).

2.1 Stochastic Reconfiguration

Stochastic Reconfiguration (SR) technique was initial developed to partially solve

the sign problem in lattice green function Monte Carlo (51) and then it was used

as an optimization method for a generic trial-function (15; 49). An important ad-

vantage of this technique is that we use more information about the trial-function

than the simple steepest descent allowing a faster optimization of the many-body

wave-function.

Given a generic trial-functionΨT , not orthogonal to the ground state it is possible

to obtain a new one closer to the ground-state by applying theoperator(Λ − Ĥ)

to this wave-function for a sufficient largeΛ. The idea of the Stochastic Recon-

figuration is to change the parameters of the original trial-function in order to be

as close as possible to the projected one.

For this purpose we define:

|ΨP 〉 =
(

Λ − Ĥ
)

|ΨT (α′
k...αp)〉 (2.1)

|Ψ′
T 〉 = δα0|ΨT 〉 +

p
∑

k=1

δαk
∂

∂αk
|ΨT 〉 (2.2)
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whereΨP is the projected one andΨ′
T is the new trail-function obtained changing

variational parameters. We can write the equation eq.2.2as:

Ψ′
T =

p
∑

k=0

δαkÔkΨT (2.3)

where

ÔkΨT (x) =
∂

∂αk
ln ΨT (x) andÔ0 = Î (2.4)

Now we want to choose the new parameters in such a way thatΨ′
T is as close as

possible toΨP . Thus we require that a set of mixed average correlation function,

corresponding to the two wave-functions2.2, 2.1, are equal. Here we impose

precisely that:
〈ΨT |Ôk|Ψ′

T 〉
〈ΨT |Ψ′

T 〉
=

〈ΨT |Ôk|ΨP 〉
〈ΨT |ΨP 〉

(2.5)

for k = 0, ..., n. This is equivalent to the equation system:

δα0 +
∑

l=1

δαl〈Ôl〉 = Λ − 〈Ĥ〉 (2.6)

δα0〈Ôk〉 +
∑

l=1

δαl〈ÔkÔl〉 = Λ〈Ôk〉 − 〈ÔkĤ〉 for k 6= 0 (2.7)

Because the equation forα0 is related to the normalization of the trial-function

and this parameter doesn’t effect any physical observable of the system, we can

substituteδα0 from the first equation in the others:
∑

l=1

δαlskl = 〈Ôk〉〈Ĥ〉 − 〈ÔkĤ〉 (2.8)

where

skl = 〈(Ôk − 〈Ôk〉)(Ôl − 〈Ôl〉)〉 (2.9)

The solution of this equation system defines a direction in the parameters space.

If we vary parameters along this direction for a sufficient small step∆t we will

decrease the energy.

The matrixsk,l is calculated at each iteration through a standard variational Monte

Carlo sampling; the single iteration constitutes a small simulation that will be

referred in the following as “bin”. After each bin the wave function parameters

are iteratively updated according to

αnew
i = αold

i + δαk∆t (2.10)
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SR is similar to a standard steepest descent (SD) calculation, where the expecta-

tion value of the energyE(αk) = 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

is optimized by iteratively changing the

parametersαi according to the corresponding derivatives of the energy (general-

ized forces):

fk = − ∂E

∂αk
= −〈Ψ|OkH +HOk|Ψ〉

〈Ψ|Ψ〉 + 2
〈Ψ|Ok|Ψ〉〈Ψ|H|Ψ〉

〈Ψ|Ψ〉2 , (2.11)

namely:

αk → αk + ∆tfk. (2.12)

where∆t is a suitable small time step, which can be taken fixed or determined at

each iteration by minimizing the energy expectation value.

Indeed the variation of the total energy∆E at each step is easily shown to be

negative for small enough∆t because, in this limit

∆E = −∆t
∑

i

f 2
i +O(∆t2).

Thus the method certainly converges at the minimum when all the forces vanish.

In the SR we have

αnew
i = αold

i +
∑

i

s̄−1
i,kfk∆t (2.13)

Using the analogy with the steepest descent, it is possible to show that conver-

gence to the energy minimum is reached when the value of∆t is sufficiently

small and is kept constant for each iteration. Indeed the energy variation for a

small change of the parameters is:

∆E = −∆t
∑

i,j

s̄−1
i,j fifj ,

and it is easily verified that the above term is always negative because the reduced

matrix s, as well ass−1, is positive definite, beings an overlap matrix with all

positive eigenvalues.

For a stable iterative method, such as the SR or the SD one, a basic ingredient

is that at each iteration the new parametersα′ are close to the previousα ac-

cording to a prescribed distance. The fundamental difference between the SR

minimization and the standard steepest descent is just related to the definition of

this distance. For the SD it is the usual one, that is defined bythe Cartesian met-

ric ∆α =
∑

k |α′
k − αk|2, instead the SR works correctly in the physical Hilbert
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space metric of the wave functionΨ, yielding∆α =
∑

i,j si,j(α
′
i − αi)(α

′
j − αj),

namely the square distance between the two wave functions corresponding to the

two different sets of variational parameters{α′} and{αk}. Therefore, from the

knowledge of the generalized forcesfk, the most convenient change of the vari-

ational parameters minimizes the functional∆E + Λ̄∆α, where∆E is the linear

change in the energy∆E = −∑i fi(α
′
i −αi) andΛ̄ is a Lagrange multiplier that

allows a stable minimization with small change∆α of the wave functionΨ. Then

the final iteration (2.13) is easily obtained.

The advantage of SR compared with SD is obvious because sometimes a small

change of the variational parameters corresponds to a largechange of the wave

function, and the SR takes into account this effect through the Eq.2.13. In par-

ticular the method is useful when a non orthogonal basis set is used, as we have

in this thesis. Moreover by using the reduced matrixs it is also possible to re-

move from the calculation those parameters that imply some redundancy in the

variational space, as it is shown in the following sections of this chapter.

2.1.1 Setting the SR parameters

In this thesis we have determined∆t by verifying the stability and the convergence

of the SR algorithm for fixed∆t value.

The simulation is stable whenever1/∆t > Λcut, whereΛcut is an energy

cutoff that is strongly dependent on the chosen wave function and it is generally

weakly dependent on the bin length. Whenever the wave function is too much

detailed, namely has a lot of variational freedom, especially for the high energy

components of the core electrons, the value ofΛcut becomes exceedingly large

and too many iterations are required for obtaining a converged variational wave

function. In fact a rough estimate of the corresponding number of iterationsP is

given byP∆t >> 1/G, whereG is the typical energy gap of the system, of the

order of few electron Volts in small atoms and molecules. Within the SR method

it is therefore extremely important to work with a bin lengthrather small, so that

many iterations can be performed without much effort.

In a Monte Carlo optimization framework the forcesfk are always determined

with some statistical noiseηk, and by iterating the procedure several times with

a fixed bin length the variational parameters will fluctuate around their mean val-
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Figure 2.1: Example of the convergence of the SR method for the variational pa-

rameters as a function of the number of stochastic iterations. In the upper(lower)

panel the Jastrow (geminal) parameters are shown. For each iteration, a varia-

tional Monte Carlo calculation is employed with a bin containing 15000 samples

of the energy, yielding at the equilibrium a standard deviation of ≃ 0.0018H.

For the first 200 iteration∆t = 0.00125H−1, for the further 200 iterations

∆t = 0.0025H−1, whereas for the remaining ones∆t = 0.005H−1.

parameters.eps
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ues. These statistical fluctuations are similar to the thermal noise of a standard

Langevin equation:

∂tαk = fk + ηk, (2.14)

where

〈ηk(t)ηk′(t′)〉 = 2Tnoiseδ(t− t′)δk,k′. (2.15)

The variational parametersαk, averaged over the Langevin simulation time (as

for instance in Fig.2.1), will be close to the true energy minimum, but the corre-

sponding forcesfk = −∂αk
E will be affected by a bias that scales to zero with the

thermal noiseTnoise. Within a QMC scheme, one needs to estimateTnoise by in-

creasing the bin length, as clearlyTnoise ∝ 1/Bin length, this noise being directly

related to the statistical fluctuations of the forces. Thus there is an optimal value

for the bin length, which guarantees a fast convergence and avoid the forces to be

biased within the statistical accuracy of the sampling. Moreover in the fluctuation

around the minimum also non Gaussian correction will be present, but in analogy

to the an-harmonic effects in solids, this error is expectedto vanish linearly with

the temperatureTnoise. An example is shown in Fig.2.1 for the optimization of

the Be atom, using a basis two exponentials for each orbital both for the geminal

and the three-body Jastrow part. The convergence is reachedin about 1000 iter-

ation with ∆t = 0.005H−1. However, in this case it is possible to use a small

bin length, yielding a statistical accuracy in the energy much poorer than the final

accuracy of about0.05mH. This is obtained by averaging the variational parame-

ters in the last1000 iterations, when they fluctuate around a mean value, allowing

a very accurate determination of the energy minimum which satisfies the Euler

conditions, namely withfk = 0 for all parameters. Those conditions have been

tested by an independent Monte Carlo simulation about600 times longer than the

bin used during the minimization.

As shown in Fig.2.2 the Euler conditions are fulfilled within statistical accu-

racy even when the bin used for the minimization is much smaller than the overall

simulation. On the other hand if the bin used is too small, as we have already

pointed out, the averaging of the parameters is affected by asizable bias.

Whenever it is possible to use a relatively small bin in the minimization, the

apparently large number of iterations required for equilibration does not really

matter, because a comparable amount of time has to be spent inthe averaging of
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Figure 2.2: Calculation of the derivative of the energy withrespect to the second

Z in the2p orbital of the geminal function for the Be atom. The calculation of

the force was obtained, at fixed variational parameters, by averaging over107

samples, allowing e.g. a statistical accuracy in the total energy of0.07mH. The

variational parameters have been obtained by an SR minimization with fixed bin

length shown in the x label. The parameter considered has thelargest deviation

from the Euler conditions.
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the variational parameters, as shown in Fig.2.1.

It is easy to convince oneself that for high enough accuracy the number of

iterations needed for the equilibration becomes negligible from the computational

point of view. In fact, in order to reduce, e.g. by a factor of ten, the accuracy

in the variational parameters, a bin ten times larger is required for decreasing the

thermal noiseTnoise by the same factor. Whereas to reduce the statistical errorsby

the same ratio, it has to be done average on100 times steps more. This means that

the fraction of time spent for equilibration becomes ten times smaller compared

with the less accurate simulation.

2.1.2 Stabilization of the SR technique

Whenever the number of variational parameters increases, it often happens that

the stochasticN ×N matrix

sk,k′ =
〈Ψ|OkOk′|Ψ〉

〈Ψ|Ψ〉 − 〈Ψ|Ok|Ψ〉
〈Ψ|Ψ〉

〈Ψ|Ok′|Ψ〉
〈Ψ|Ψ〉 (2.16)

becomes singular, i.e. the condition number, defined as the ratio σ = λN/λ1 be-

tween its maximumλN and minimum eigenvalueλ1, is too large. In that case the

inversion of this matrix generates clear numerical instabilities which are difficult

to control especially within a statistical method.

The first successful proposal to control this instability was to remove from

the inversion problem (49), required for the minimization, those directions in the

variational parameter space corresponding to exceedinglysmall eigenvaluesλi. In

this thesis we describe a method the is much better. As a first step, we show that

the reason of the large condition numberσ is due to the existence of ”redundant”

variational parameters that do not make changes to the wave function within a

prescribed toleranceǫ.

Indeed in practical calculations, we are interested in the minimization of the

wave function within a reasonable accuracy. The toleranceǫ may represent there-

fore the distance between the exact normalized variationalwave function which

minimizes the energy expectation value and the approximateacceptable one, for

which we no longer iterate the minimization scheme. For instanceǫ = 1/1000 is

by far acceptable for chemical and physical interest.
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A stable algorithm is then obtained by simply removing the parameters that do

not change the wave function by less thanǫ from the minimization. An efficient

scheme to remove the ”redundant parameters” is also given.

Let us consider theN normalized states orthogonal toΨ, but not mutually

orthogonal:

|ei〉 =
(Ok − 〈Ok〉)|Ψ〉

√

〈Ψ|(Ok − 〈Ok〉)2|Ψ
. (2.17)

These normalized vectors defineN directions in theN−dimensional variational

parameter manifold, which are independent as long as the determinantS of the

correspondingN ×N overlap matrix

sk,k′ = 〈ek|ek′〉 (2.18)

〈ek|ek〉 = 1 (2.19)

is non zero. The numberS is clearly positive and it assumes its maximum value

1 whenever all the directionsei are mutually orthogonal. On the other hand, let

us suppose that there exists an eigenvalueλ̄ of s smaller than the square of the

desired toleranceǫ2, then the corresponding eigenvector|v >=
∑

i ai|ei〉 is such

that:

〈v|v〉 =
∑

i,j

aiaj s̄i,j = λ̄ (2.20)

where the latter equation holds due to the normalization condition
∑

i a
2
i = 1. We

arrive therefore to the conclusion that it is possible to define a vectorv with almost

vanishing norm|v| =
√
λ ≤ ǫ as a linear combination ofei, with at least some

non zero coefficient. This implies that theN directionsek are linearly dependent

within a toleranceǫ and one can safely remove at least one parameter from the

calculation.

In general whenever there arep vectorsvi that are below the toleranceǫ the

optimal choice to stabilize the minimization procedure is to removep rows andp

columns from the matrix (2.18), in such a way that the corresponding determinant

of the(N − p) × (N − p) overlap matrix is maximum.

From practical purposes it is enough to consider an iterative scheme to find a

large minor, but not necessarily the maximum one. This method is based on the

inverse of̄s. At each step we remove thei− th row and column from̄s for which

s̄−1
i,i is maximum. We stop to remove rows and columns afterp inversions. In
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this approach we exploit the fact that, by a consequence of the Laplace theorem

on determinants,̄s−1
k,k is the ratio between the described minor without thek − th

row and column and the determinant of the fulls̄matrix. Since within a stochastic

method it is certainly not possible to work with a machine precision tolerance, set-

ting ǫ = 0.001 guarantees a stable algorithm, without affecting the accuracy of the

calculation. The advantage of this scheme, compared with the previous one(18),

is that the less relevant parameters can be easily identifiedafter few iterations and

do not change further in the process of minimization.

2.2 Structural optimization

In the last few years remarkable progresses have been made todevelop Quan-

tum Monte Carlo (QMC) techniques which are able in principleto perform struc-

tural optimization of molecules and complex systems (29; 52). Within the Born-

Oppheneimer approximation the nuclear positions~Ri can be considered as fur-

ther variational parameters included in the set{αi} used for the SR minimization

(2.13) of the energy expectation value. For clarity, in order to distinguish the

conventional variational parameters from the ionic positions, in this section we

indicate with{ci} the former ones, and with~Ri the latter ones. It is understood

thatRν
i = αk, where a particular indexk of the whole set of parameters{αi}

corresponds to a given spatial component (ν = 1, 2, 3) of thei−th ion.

We computed the forces~F acting on each of theM nuclear positions{~R1, . . . , ~RM},

beingM the total number of nuclei in the system:

~F (~Ra) = −~∇~Ra
E({ci}, ~Ra) (2.21)

= −〈Ψ|ORH +HOR + ∂RH|Ψ〉
〈Ψ|Ψ〉 + 2

〈Ψ|OR|Ψ〉〈Ψ|H|Ψ〉
〈Ψ|Ψ〉2 ,(2.22)

where operatorOR are defined as logarithmic derivatives respect to nuclear posi-

tion of the trial-function in analogy to the operatorOk 2.4. This generalized forces

were than used to perform structural optimization using thethe iteration (2.13).

In the first part of this thesis we have used a finite differenceoperator ~∆
∆Ra

for the

evaluation of the force acting on a given nuclear positiona:

~F (~Ra) = −
~∆

∆R a
E = −E(~Ra + ~∆Ra) − E(~Ra − ~∆Ra)

2∆R
+O(∆R2) (2.23)
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where ~∆Ra is a 3 dimensional vector. Its length∆R is chosen to be0.01 atomic

units, a value that is small enough for negligible finite difference errors.

In order to evaluate the energy differences in Eq.2.23with a finite variance

we have used the Space-Warp coordinate transformation (46; 53). This transfor-

mation was also used in the evaluation of the wave-function derivatives respect to

nuclear positionsOR. Even if Space-Warp transformation is a very efficient tech-

nique to reduce the variance of the forces, it is very time consuming and so for

larger systems we preferred to use Zero Variance forces (29), as it was described

in the chapter 1.

TheOR operators are used also in the definition of the reduced matrix s̄ for

those elements depending on the variation with respect to a nuclear coordinate. In

this way it is possible to optimize both the wave function andthe ionic positions

at the same time, in close analogy with the Car-Parrinello(54) method applied to

the minimization problem. Also Tanaka (48) tried to perform Car-Parrinello like

simulations via QMC, within the less efficient steepest descent framework.

An important source of systematic errors is the dependence of the variational

parametersci on the ionic configuration~R, because for the final equilibrium ge-

ometry all the forcesfi corresponding toci have to be zero, in order to guarantee

that the true minimum of the potential energy surface (PES) is reached (55; 56).

As shown clearly in the previous subsection, within a QMC approach it is pos-

sible to control this condition by increasing systematically the bin length, when

the thermal biasTnoise vanishes. In Fig.2.3 we report the equilibrium distance

of the Li molecule as a function of the inverse bin length, so that an accurate

evaluation of such an important quantity is possible even when the number of

variational parameters is rather large, by extrapolating the value to an infinite bin

length. However, as it is seen in the picture, though the inclusion of the 3s orbital

in the atomic AGP basis substantially improves the equilibrium distance and the

total energy by≃ 1mH, this larger basis makes our simulation less efficient, as

the time step∆t has to be reduced by a factor three.

We have not attempted to extend the geometry optimization tothe more ac-

curate DMC, since there are technical difficulties (57), and it is computationally

much more demanding.
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Figure 2.3: Plot of the equilibrium distance of theLi2 molecule as a function of

the inverse bin length. The total energy and the binding energy are reported in

Tables3.3 and3.2 respectively. For all simulations the initial wave-function is

optimized atLi− Li distance6 a.u.
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2.3 Hessian Optimization

The SR method generally performs very well, whenever there is only one energy

scale in the variational wave function. However if there areseveral energy scales

in the problem, some of the variational parameters, e.g. theones defining the

low energy valence orbitals, converge very slowly with respect to the others, and

the number of iterations required for the equilibration becomes exceedingly large.

Moreover the time step∆t necessary for a stable convergence depends on the high

energy orbitals, whose dynamics cannot be accelerated beyond a certain thresh-

old. Futhermore the SR method is based on a first order dynamics, and as will be

illustrated in the following (see section5.4.2), it is not adapted to perform param-

eters optimization during a ion Langevin Dynamics. In this thesis to overcome

these difficulties we have used a very efficient optimizationmethod the Stochastic

Reconfiguration with Hessian acceleration (SRH) (50).

The central point of the SRH is to use not only directions given by the gener-

alized forces2.11, to lower the energy expectation value, but also the information

coming from the Hessian matrix to accelerate the convergence. The idea to use

the Hessian matrix is not new, already Lin, Zhang and Rappe (45) proposed to use

analytic derivatives to optimize the energy, but their implementation was ineffi-

cient and unstable.

Now we will review the SRH method and we will explain the reason of its effi-

ciency.

Given an HamiltonianH and a trial-functionψα(x) = 〈x|ψα〉 depending on a

set of parametersα = α1, α2, ....αn, we want to optimize the energy expectation

value of the energy on this wave-function:

Eα =
〈ψα|H|ψα〉
〈ψα|ψα〉

(2.24)

respect to the parameters set.

To simplify the notation henceforth the symbol<> indicates the quantum expec-

tation value overψα, so thatEα = 〈H〉. In order the optimize the energy and to

find the new parametersα′ = α + γ, we expand the trial-function up to second
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order inγ:

|ψα+γ〉 =

{

1 +

[

p
∑

k

γk(O
k − 〈Ok〉) +

β

2

p
∑

k,k′=1

γkγk′(Ok − 〈Ok〉)(Ok′ − 〈Ok′〉)
]}

|ψα〉

(2.25)

with β = 1, whereOk is the operator with associated diagonal elements (15):

Ok(x) =
∂αk

ψα(x)

ψα(x)
(2.26)

Here the constantβ will be used in order to highlight the various terms in the

energy expansions. Using the fact that:

〈ψα|ψα〉 = 1

〈ψα+γ |ψα+γ〉 = 1 + (1 + β)

p
∑

k,k′=1

γkγk′〈(Ok − 〈Ok〉)(Ok′ − 〈Ok′〉)〉 +O(γ3)

we can expand up second order the energy given by the new wave-functionψα+γ(x)

and obtain:

Eα+γ =
〈ψα+γ |H|ψα+γ〉
〈ψα+γ |ψα+γ〉

= Eα + 2
∑

γk〈(H −Eα)Ok〉

+ (1 + β)

p
∑

k,k′=1

γkγk′〈(H − Eα) (Ok − 〈Ok〉)(Ok′ − 〈Ok′〉)〉

+
1

2
〈
[

Ok − 〈Ok〉,
[

H − Eα, O
k − 〈Ok〉

]]

〉

We can define:

Sk,k′

h = 〈
[

Ok − 〈Ok〉,
[

H − Eα, O
k − 〈Ok〉

]]

〉 (2.27)

Gk,k′

= 2〈(H − Eα) (Ok − 〈Ok〉)(Ok′ − 〈Ok′〉)〉 (2.28)

fk = −2〈(H −Eα)Ok〉 (2.29)

and so the expansion of the energy reads:

∆E = −
∑

k

γkfk +
1

2

∑

k,k′

(1 + β) [Sh + (1 + β)G]k,k′

(2.30)
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The wave-function parameters can then iteratively changedto stay at the minimum

of the above quadratic form whenever it is positive defined, and in such case the

minimum energy is obtained for:

~γ = B−1 ~f (2.31)

where

B = Sh + (1 + β)G (2.32)

It can happen that the quadratic form is not positive definiteand so the energy

expansion2.30is not bounded from below, this can due to different reasons:non

quadratic corrections; statistical fluctuations of the Hessian matrix expectation

value; or because we are far from the minimum. In this cases the correction

due to the equation2.31 may lead to an higher energy thanEα. To overcame

this problem the matrixB is changed in such way to be always positive definite

B′ = B + µS, whereS is the Stochastic Reconfiguration matrix2.9. The use

of theS matrix guarantees that we are moving in the direction of a well defined

minimum when the change of the wave-function is small, moreover in the limit

of largeµ we recover the Stochastic Reconfiguration optimization method. To be

sure that the change of the wave-function is small we use a control parameter to

impose a constraint to the variation of the wave-function∆WF by means of the

inequalities

|∆WF |2 ≤ r2 (2.33)

where, using2.9and2.25, |∆WF |2 = 〈φα|φα+γ〉 =
∑

k,k′ γkγk′Sk,k′

. This con-

straint always allows to work with a positive definitive matrix B′, and for small

r the energy is certainly lower thanEα. We want to emphasize that the condi-

tion µ ≥ 0 is non zero both when2.32is not positive defined and when|∆WF |
corresponding to eq.2.31 exceedsr. This is equivalent to impose a Lagrange

multiplier to the energy minimization, namely∆E + µ|∆WF |2, with the condi-

tion |∆WF | = r.

There is another important ingredients for an efficient implementation of the

Hessian technique to QMC. In fact, as pointed out in Ref.(50; 58) is extremely

important to evaluate the quantities appearing in the Hessian2.32in the form of

correlation function< AB > − < B >< A >. This because the fluctuation of
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operators in this form are usually smaller than the one of< AB > especially if

A andB are correlated. Therefore using the fact that the expectation value of the

derivative of a local valueOL = ÔΨ/Ψ of an Hermitian operator̂O respect to any

real parameterc in a real wave functionΨ is always zero (see for instance (45)),

we can rearrange the Hessian terms in more symmetric way in form of correlation

function:

fk = 〈EL(x)Ok(x)〉 − 〈EL(x)〉〈Ok(x)〉
Sk,k′

h = 〈∂αk
EL(x)Ok′

(x)〉 − 〈∂αk
EL(x)〉〈Ok′

(x)〉
+ 〈∂αk′

EL(x)Ok(x)〉 − 〈∂αk′
EL(x)〉〈Ok(x)〉

Sk,k′

= 〈Ok′

(x)Ok(x)〉 − 〈Ok′

(x)〉〈Ok(x)〉
G = 〈δEL(x)δOk′

(x)δOk(x)〉

Because theG matrix 2.28 is zero for the exact ground state and therefore is

expected to be very small for a good variational wave-function, it is possible,

following the suggestion of Ref. (50), to choseβ = −1, so thatB = Sh +µS. As

shown by Ref. (50) this choice can even lead to faster convergence than the full

Hessian matrix.

The matrixG is the only part that is not in the form of a correlation function, for

this reason is important thatB does not depend on it, in such way to reduce the

fluctuation of the Hessian matrix, and this can naively explain the suggestion of

Ref. (50) to choseβ = −1.

As for the SR method the parameters are iteratively updated using the equation:

~γ = [Sh + µS]−1 ~f (2.34)

where the forces~f and the matrixB are evaluated using VMC.
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Chapter 3

Results on Molecules

3.1 Application of the JAGP to molecules

In the first part of this thesis we study correlation and atomization energies, ac-

companied with the determination of the ground state optimal structure for a re-

stricted ensemble of molecules. For each of them we performed a full all-electron

SR geometry optimization, starting from the experimental molecular structure.

After the energy minimization, we carried out all-electronVMC and DMC simu-

lations at the optimal geometry within the so-called ”fixed node approximation”.

The basis that we used was composed by exponential and Gaussian orbitals for

both the three-body and the pairing determinant, in this wayboth the antisymmet-

ric and the bosonic part are well described. However, both inthe AGP and in the

Jastrow part we never used a large basis set, in order to keep the wave function

as simple as possible. The accuracy of our wave function can be obviously im-

proved by an extension of the one particle basis set. Nevertheless, for most of the

molecules studied with a simple JAGP wave function, a DMC calculation is able

to reach the chemical accuracy in the binding energies and the SR optimization

yields very precise geometries already at the VMC level.

In the first part of this section some results will be presented for a small set

of widely studied molecules and belonging to the G1 database. In the second

subsection we will treat the benzene and its radical cationC6H
+
6 , by taking into

account its distortion due to the Jahn-Teller effect, that is well reproduced by our

SR geometry optimization.
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Table 3.1: Total energies in variational (EV MC) and diffusion (EDMC) Monte

Carlo calculations; the percentages of correlation energyrecovered in VMC

(EV MC
c (%)) and DMC (EDMC

c (%)) have been evaluated using the “exact” (E0)

and Hartree–Fock (EHF ) energies from the references (1). Here “exact” means

the ground state energy of the non relativistic infinite nuclear mass Hamiltonian.

The energies are inHartree.

E0 EHF EV MC EV MC
c (%) EDMC EDMC

c (%)

Li -7.47806 (59) -7.432727 (59) -7.47721(11) 98.12(24) -7.47791(12) 99.67(27)

Li2 -14.9954 (16) -14.87152 (16) -14.99002(12) 95.7(1) -14.99472(17) 99.45(14)

Be -14.66736 (59) -14.573023 (59) -14.66328(19) 95.67(20) -14.66705(12) 99.67(13)

Be2 -29.33854(5) (16) -29.13242 (16) -29.3179(5) 89.99(24) -29.33341(25) 97.51(12)

O -75.0673 (59) -74.809398 (59) -75.0237(5) 83.09(19) -75.0522(3) 94.14(11)

H2O -76.438(3) (60) -76.068(1) (60) -76.3803(4) 84.40(10) -76.4175(4) 94.46(10)

O2 -150.3268 (16) -149.6659 (16) -150.1992(5) 80.69(7) -150.272(2) 91.7(3)

C -37.8450 (59) -37.688619 (59) -37.81303(17) 79.55(11) -37.8350(6) 93.6(4)

C2 -75.923(5) (16) -75.40620 (16) -75.8293(5) 81.87(10) -75.8810(5) 91.87(10)

CH4 -40.515 (61) -40.219 (61) -40.4627(3) 82.33(10) -40.5041(8) 96.3(3)

C6H6 -232.247(4) (62) -230.82(2) (63) -231.8084(15) 69.25(10) -232.156(3) 93.60(21)

3.2 Small diatomic molecules, methane, and water

Except fromBe2 andC2, all the molecules presented here belong to the standard

G1 reference set; all their properties are well known and well reproduced by stan-

dard quantum chemistry methods, therefore they constitutea good case for testing

new approaches and new wave functions.

TheLi dimer is one of the easiest molecules to be studied after theH2, which

is exact for any Diffusion Monte Carlo (FN DMC) calculation with a trial wave

function that preserves the node-less structure.Li2 is less trivial due to the pres-

ence of core electrons that are only partially involved in the chemical bond and to

the 2s − 2p near degeneracy for the valence electrons. Therefore many authors

have done benchmark calculation on this molecule to check the accuracy of the

method or to determine the variance of the inter-nuclear force calculated within

a QMC framework. In this thesis we start fromLi2 to move toward a structural
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analysis of more complex compounds, thus showing that our QMC approach is

able to handle relevant chemical problems.

With our approach more than99% of theLi2 correlation energy is recovered

by a DMC simulation (Table3.1), and the atomization energy is exact within few

thousands of eV (0.02 kcal mol−1) (Table3.3). Similar accuracy have been pre-

viously reached within a DMC approach(16), only by using a multi-reference CI

like wave function, that before our work, was the usual way toimprove the elec-

tronic nodal structure. As stressed before, the JAGP wave function includes many

resonating configurations through the geminal expansion, beyond the1s 2s HF

ground state. The bond length has been calculated at the variational level through

the fully optimized JAGP wave function: the resulting equilibrium geometry turns

out to be highly accurate (Table3.2), with a discrepancy of only0.001a0 from the

exact result.

Table 3.2: Bond lengths (R) in atomic units; the subscript0 refers to the “exact”

results. For the water moleculeR is the distance between O and H andθ is the

angle HOH (in deg), forCH4 R is the distance between C and H andθ is the HCH

angle.

R0 R θ0 θ

Li2 5.051 5.0516(2)

O2 2.282 2.3425(18)

C2 2.348 2.366(2)

H2O 1.809 1.8071(23) 104.52 104.74(17)

CH4 2.041 2.049(1) 109.47 109.55(6)

RCC
0 RCC RCH

0 RCH

C6H6 2.640 2.662(4) 2.028 1.992(2)

The good bond length, we obtained, is partially due to the energy optimization

that is often more effective than the variance minimization, as shown by different

authors (40; 41; 42), and partially due to the quality of the trial-function.

Indeed within our scheme we obtain good results without exploiting the com-

putationally much more demanding DMC, thus highlighting the importance of the

SR minimization described in Subsection2.2.
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Table 3.3: Binding energies ineV obtained by variational (∆V MC) and diffu-

sion (∆DMC) Monte Carlo calculations;∆0 is the “exact” result for the non-

relativistic infinite nuclear mass Hamiltonian. Also the percentages (∆V MC(%)

and∆DMC(%)) of the total binding energies are reported.

∆0 ∆V MC ∆V MC(%) ∆DMC ∆DMC(%)

Li2 -1.069 -0.967(3) 90.4(3) -1.058(5) 99.0(5)

O2 -5.230 -4.13(4) 78.9(8) -4.56(5) 87.1(9)

H2O -10.087 -9.704(24) 96.2(1.0) -9.940(19) 98.5(9)

C2 -6.340 -5.530(13) 87.22(20) -5.74(3) 90.6(5)

CH4 -18.232 -17.678(9) 96.96(5) -18.21(4) 99.86(22)

C6H6 -59.25 -52.53(4) 88.67(7) -58.41(8) 98.60(13)

Let us now consider larger molecules. BothC2 andO2 are poorly described

by a single Slater determinant, since the presence of the non-dynamic correlation

is strong. Instead with a single geminal JAGP wave function,including implicitly

many Slater-determinants(15), it is possible to obtain a quite good description of

their molecular properties. In both the cases, the variational energies recover more

than80% of the correlation energy, the DMC ones yield more than90%, as shown

in Tab.3.1. These results are of the same level of accuracy as those obtained by

Filippi et al(16) with a multi-reference wave function by using the same Slater

basis for the antisymmetric part and a different Jastrow factor. From the Table3.3

of the atomization energies, it is apparent that DMC considerably improves the

binding energy with respect to the VMC values, although for these two molecules

it is quite far from the chemical accuracy (≃ 0.1 eV): forC2 the error is 0.60(3) eV,

for O2 is 0.67(5) eV. Indeed, it is well known that the electronic structure of the

atoms is described better than the corresponding moleculesif the basis set remains

the same, and the nodal error is not compensated by the energydifference between

the separated atoms and the molecule. In a benchmark DMC calculation with

pseudo-potentials (64), Grossman found an error of 0.27 eV in the atomization

energy forO2, by using a single determinant wave function. Probably, pseudo-

potentials allow the error between the pseudo-atoms and thepseudo-molecule to

compensate better, thus yielding more accurate energy differences. As a final
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remark on theO2 andC2 molecules, our bond lengths are in between the LDA and

GGA precision, and still worse than the best CCSD calculations, but our results

may be considerably improved by a larger atomic basis set.

Methane and water are very well described by the JAGP wave function. Also

for these molecules we recover more than80% of correlation energy at the VMC

level, while DMC yields more than90%, with the same level of accuracy reached

in previous Monte Carlo studies (61; 65; 66; 67). Here the binding energy is

almost exact, since in this case the nodal energy error arises essentially from only

one atom (carbon or oxygen) and therefore it is exactly compensated when the

atomization energy is calculated. Also the bond lengths arehighly accurate, with

an error lower then 0.005a0.

ForBe2 we applied a large Gaussian and exponential basis set for thedeter-

minant and the Jastrow factor and we recovered, at the experimental equilibrium

geometry, the90% of the total correlation energy in the VMC, while DMC gives

97.5% of correlation, i.e. a total energy of -29.33341(25) H. Although this value

is better than the one obtained by Filippiet al (16) (-29.3301(2) H) with a smaller

basis (3s atomic orbitals not included), it is not enough to bind the molecule, be-

cause the binding energy remains still positive (0.0069(37) H). Instead, once the

molecular geometry has been relaxed, the SR optimization finds a bond distance

of 13.5(5) a0 at the VMC level; therefore the employed basis allows the molecule

to have a Van der Waals like minimum, quite far from the experimental value.

In order to have a reasonable description of the bond length and the atomiza-

tion energy, one needs to include at least a3s2p basis in the antisymmetric part,

as pointed out in Ref. (68). Indeed an atomization energy compatible with the

experimental result (0.11(1) eV) has been obtained within the extended geminal

model (69) by using a much larger basis set (9s,7p,4d,2f,1g) (70). This suggests

that a complete basis set calculation with JAGP may describealso this molecule.

However our SR method can not cope with a very large basis in a feasible compu-

tational time. Therefore we believe that at present the accuracy needed to describe

correctlyBe2 is out of the possibilities of the approach.
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Table 3.4: Binding energies ineV obtained by variational (∆V MC) and diffusion

(∆DMC) Monte Carlo calculations with different trial wave functions for ben-

zene. In order to calculate the binding energies yielded by the 2-body Jastrow we

used the atomic energies reported in Ref. (2). The percentages (∆V MC(%) and

∆DMC(%)) of the total binding energies are also reported.

∆V MC ∆V MC(%) ∆DMC ∆DMC(%)

Kekule + 2body -30.57(5) 51.60(8) - -

resonating Kekule + 2body -32.78(5) 55.33(8) - -

resonating Dewar Kekule + 2body -34.75(5) 58.66(8) -56.84(11) 95.95(18)

Kekule + 3body -49.20(4) 83.05(7) -55.54(10) 93.75(17)

resonating Kekule + 3body -51.33(4) 86.65(7) -57.25(9) 96.64(15)

resonating Dewar Kekule + 3body -52.53(4) 88.67(7) -58.41(8) 98.60(13)

full resonating + 3body -52.65(4) 88.869(7) -58.30(8) 98.40(13)

3.3 Benzene and its radical cation

We studied the1A1g ground state of the benzene molecule by using a very simple

one particle basis set: for the AGP, a 2s1p DZ set centered on the carbon atoms

and a 1s SZ on the hydrogen, instead for the 3-body Jastrow, a 1s1p DZ-GTO set

centered only on the carbon sites.C6H6 is a peculiar molecule, since its highly

symmetric ground state, which belongs to theD6h point group, is a resonance

among different many-body states, each of them characterized by three double

bonds between carbon atoms. This resonance is responsible for the stability of

the structure and therefore for its aromatic properties. Westarted from a non

resonating 2-body Jastrow wave function, which dimerizes the ring and breaks

the full rotational symmetry, leading to the Kekulé configuration. As we expected,

the inclusion of the resonance between the two possible Kekulé states lowers the

VMC energy by more than 2 eV. The wave function is further improved by adding

another type of resonance, that includes also the Dewar contributions connecting

third nearest neighbor carbons.

As reported in Tab.3.4, the gain with respect to the simplest Kekulé wave
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Table 3.5: Bond lengths (r) for the two lowest2B2g and2B3g states of the benzene

radical cation. The anglesα are expressed in degrees, the lengths ina0. The

carbon sites are numerated from 1 to 6.

2B2g
2B3g Computational method

acute obtuse

r(C1 − C2) 2.616 2.694 B3LYP/cc-pVTZ (4)

2.649 2.725 BLYP/6-31G* (3)

2.659(1) 2.733(4) SR-VMC1

r(C2 − C3) 2.735 2.579 B3LYP/cc-pVTZ (4)

2.766 2.615 BLYP/6-31G* (3)

2.764(2) 2.628(4) SR-VMC2

α(C6C1C2) 118.4 121.6 B3LYP/cc-pVTZ (4)

118.5 121.5 BLYP/6-31G* (3)

118.95(6) 121.29(17) SR-VMC1

function amounts to 4.2 eV, but the main improvement arises from the further in-

clusion of the three-body Jastrow factor, which allows to recover the89% of the

total atomization energy at the VMC level. The main effect ofthe three body term

is to keep the total charge around the carbon sites to approximately six electrons,

thus penalizing the double occupation of thepz orbitals. The same important cor-

relation ingredient is present in the well known Gutzwillerwave function already

used for polyacetylene (71; 72). Within this scheme we have systematically in-

cluded in the 3-body Jastrow part the same type of terms present in the AGP one,

namely bothga,b andλa,b are non zero for the same pairs of atoms. As expected,

the terms connecting next nearest neighbour carbon sites are much less important

than the remaining ones because the VMC energy does not significantly improve

(see the full resonating + 3-body wave function in Tab.3.4). A more clear be-

haviour is found by carrying out DMC simulations: the interplay between the

resonance among different structures and the Gutzwiller-like correlation refines

more and more the nodal surface topology, thus lowering the DMC energy by

significant amounts.

Therefore it is crucial to insert into the variational wave function all these in-
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Figure 3.1: Electron density (atomic units) projected on the plane ofC6H6. The

surface plot shows the difference between the resonating valence bond wave func-

tion, with the correctA1g symmetry of the molecule, and a non-resonating one,

which has the symmetry of the Hartree Fock wave function.

Figs/benzenefico.eps
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gredients in order to have an adequate description of the molecule. For instance,

in Fig. 3.2 we report the density surface difference between the non-resonating

3-body Jastrow wave function, which breaks theC6 rotational invariance, and

the resonating Kekulé structure, which preserves the correctA1g symmetry: the

change in the electronic structure is significant. The best result for the bind-

ing energy is obtained with the Kekulé Dewar resonating 3 body wave function,

which recovers the98, 6% of the total atomization energy with an absolute error

of 0.84(8) eV. As Pauling (73) first pointed out, benzene is a genuine RVB system,

indeed it is well described by the JAGP wave function. Moreover Pauling gave an

estimate for the resonance energy of 1.605 eV from thermochemical experiments

in qualitative agreement with our results. A final remark about the error in the

total atomization energy: the latest frozen core CCSD(T) calculations (62; 74) are

able to reach a precision of 0.1 eV, but only after the complete basis set extrapola-

tion and the inclusion of the core valence effects to go beyond the psudopotential

approximation. Without the latter corrections, the error is quite large and even in

the CCSD approach it is 0.65 eV (74). In our case, such an error arises from the

fixed node approximation, whose nodal error is not compensated by the difference

between the atomic and the molecular energies, as already noticed in the previous

subsection.

The radical cationC6H
+
6 of the benzene molecule has been the subject of in-

tense theoretical studies(3; 4), aimed to focus on the Jahn-Teller distorted ground

state structure. Indeed the ionized2E1g state, which is degenerate, breaks the

symmetry and experiences a relaxation from theD6h point group to two different

states,2B2g and2B3g, that belong to the lowerD2h point group. In practice, the

former is the elongated acute deformation of the benzene hexagon, the latter is its

compressed obtuse distortion. We applied the SR structuraloptimization, starting

from the2E1g state, and the minimization correctly yielded a deformation toward

the acute structure for the2B2g state and the obtuse for the2B3g one; the first part

of the evolution of the distances and the angles during thosesimulations is shown

in Fig.3.3. After this equilibration, average over 200 further iterations yields bond

distances and angles with the same accuracy as the all-electron BLYP/6-31G*

calculations reported in Ref. (3) (see Tab.3.5).

As it appears from Tab.3.6 not only the structure but also the DMC total

energy is in perfect agreement with the BLYP/6-31G*, and much better than
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Figure 3.2: Surface plot of the charge density projected onto the molecular

plane. The difference between the non-resonating (indicated as HF) and resonat-

ing Kekulé 3-body Jastrow wave function densities is shown. Notice the corre-

sponding change from a dimerized structure to aC6 rotational invariant density

profile.

Figs/firHFdiffden_new.eps
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Figure 3.3: Plot of the convergence toward the equilibrium geometry for the2B2g

acute and the2B3g obtuse benzene cation. Notice that both the simulations start

form the ground state neutral benzene geometry and relax with a change both in

theC − C bond lengths and in the angles. The symbols are the same of Tab. 3.5.

Figs/adiabatic.eps
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Table 3.6: Total energies for the2B2g and2B3g states of the benzene radical cation

after the geometry relaxation. A comparison with a BLYP/6-31G* and SVWN/6-

31G* all-electron calculation (Ref. (3)) is reported.

VMC DMC BLYP/6-31G*SVWN/6-31G*
2B2g -231.4834(15) -231.816(3) -231.815495 -230.547931
2B3g -231.4826(14) -231.812(3) -231.815538 -230.547751

SVWN/6-31G* that does not contain semi empirical functionals, for which the

comparison with our calculation is more appropriate, beingfully ab-initio.

The difference of the VMC and DMC energies between the two distorted

cations are the same within the error bars; indeed, the determination of which

structure is the real cation ground state is a challenging problem, since the exper-

imental results give a difference of only few meV in favor of the obtuse state and

also the most refined quantum chemistry methods are not in agreement among

themselves (3). A more affordable problem is the determination of the adiabatic

ionization potential (AIP), calculated for the2B3g state, following the experimen-

tal hint. Recently, very precise CCSD(T) calculations havebeen performed in

order to establish a benchmark theoretical study for the ionization threshold of

benzene (4); the results are reported in Tab.3.7. After the correction of the zero

point energy due to the different structure of the cation with respect to the neu-

tral molecule and taken from a B3LYP/cc-pVTZ calculation reported in Ref. (4),

the agreement among our DMC result, the benchmark calculation and the exper-

imental value is impressive. Notice that in this case there should be a perfect

cancellation of nodal errors in order to obtain such an accurate value; however,

we believe that it is not a fortuitous result, because in thiscase the underlying

nodal structure does not change much by adding or removing a single electron.

Therefore we expect that this property holds for all the affinity and ionization

energy calculations with a particularly accurate variational wave function as the

one we have proposed here. Nevertheless DMC is needed to reach the chemical

accuracy, since the VMC result is slightly off from the experimental one just by

few tenths of eV. The AIP and the geometry determination for the C6H
+
6 are

encouraging to pursue this approach, with the aim to describe even much more
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Table 3.7: Adiabatic ionization potential of the benzene molecule; our estimate

is done for the2B3g relaxed geometries of the benzene radical cation, with an

inclusion of the zero point motion correction between the2B3g state and the1A1g

neutral molecule ground state, calculated in Ref. (4) at the B3LYP/6-31G* level.

VMC DMC CCSD(T)/cc-pV∞Z (4) experiment (75)

AIP 8.86(6) 9.36(8) 9.29(4)

∆ZPEad -0.074 -0.074 -0.074

best estimate 8.79(6) 9.29(8) 9.22(4) 9.2437(8)

interesting and challenging chemical systems.
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Chapter 4

Quantum Monte Carlo on extended

systems

A naive and certainly very inefficient way to study extended system is to simulate

clusters of atoms and to investigate the property of the cluster as the number of

atoms increase. In this limit the collective behaviour should asymptotically ap-

proach to the bulk solid one. However the number of atoms thatcan be simulated

by QMC is so small that the properties of the cluster will be dominated by the

surface effects.

An alternative and efficient way to approximate the bulk properties of an infinite

Figure 4.1: A simulation box with periodic boundary conditions.

system is the use of periodic boundary conditions (PBC) on a finite box. These

boundary conditions mean that the simulation cell is wrapped onto itself and, as

an electron moves out of one side of the super-cell it immediately moves back

through the opposite side (see figure4.1). The advantage of using such boundary

pbc.eps
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conditions is that there are no longer ”surface electrons” and hence no surface

effects. However even with PBC size effects are still present. This is due to the

lack of long wavelength fluctuations in the charge density. For a simulation box

of linear dimensionL, the periodicity will remove any correlation length greater

thanL.

In this thesis we used a cubic simulation cell with volumeL3 with PBC, and the

size effects are partially taken into account by increasingthe size of the super-cell.

The general hydrogen Hamiltonian with periodic boundary condition is written as:

Ĥ =

N
∑

i=1

−1

2
∇2

i +
1

2

∑

~ri 6=~rj+~Rs, ~Rs

1

|~ri − ~rj − ~Rs|
−
∑

~Rs

N
∑

i

Nions
∑

j

1

|~ri − ~Rj − ~Rs|

+
1

2

∑

~Ri 6=~Rj+~Rs, ~Rs

1

|~Ri − ~Rj − ~Rs|
(4.1)

where ~Rs are the vectors of the periodic lattice associated with the simulation

box, ~ri are electron coordinates and~Ri are the proton coordinates, andN is the

number of electrons in the simulation cell. Infinite mass of the protons is assumed

so that the kinetic term contains only the electronic contribution. Notice that the

Hamiltonian4.1 is invariant under the translation of any electron coordinate by a

vector inRs. Moreover if the one body potential is generated by a ionic lattice,

the Hamiltonian4.1has to be invariant also with respect to a translation given by

a vector of the ionic lattice. Notice that only for neutral systems the sum of the

one and the two body potential4.1 is well defined and convergent.

4.1 Periodic Wave-Function

As far as the electron part is concerned, by applying the Bloch’s theorem one finds

that the eigen-functions for the Hamiltonian4.1can be written as:

Ψ(~r1, ~r2, ...) = e−i~k
P

i ~riΦ(~r1, ~r2, ...), (4.2)

whereΦ(~r1, ~r2, ...) is a function invariant for translation of any electron coordi-

nates by a vector~Rs, and~k is a vector in the first Brillouin Zone. Although better

choices are possible, as Baldereschi’s points, or using Twisted Boundary Con-

ditions (76), in this preliminary work on solids we adopted the simplestchoice
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~k = 0. The correct thermodynamic limit, within the Bohr-Oppenaimer approx-

imation, can be obviously reached forL → ∞ at fixed densityρ = N/L3. In

our simulations the distances are evaluated from the closest image of a given par-

ticle. One has to choose carefully an appropriate wave-function for a periodic

system. In fact, as the minimal inter-particle distance switches from one image to

another, there could be a discontinuity in the derivatives of the wave function. If

this happen, the VMC energy can become lower than the true ground state one.

This is due to the fact that the discontinuity leads toδ functions that produce a

finite positive contribution to the kinetic energy that however will be missed by

the VMC sampling procedure, because it occurs in an irrelevant surface of the

configuration space. In the past this problem has been solvedby making use of

different approaches: either by summing over all possible images by the Ewald

sums or by requiring that the trial-function and its derivatives vanish at the surface

of the sphere inscribed within the Wigner-Seitz cell (77). Instead in the present

thesis we introduced a simple and more efficient approach by using periodic or-

bitals with the correct behavior atL/2 without resorting the expensive evaluation

of the Ewald sums.

4.1.1 Periodic orbitals

In order to obtain periodic orbitals, starting from non periodic ones it is sufficient

to replace the Cartesian coordinatesxi with a simple periodic functionx′i(x) that

take into account the appropriate periodicity of the box. Inthis thesis we used:

x′i =
L

π
sin
(πxi

L

)

(4.3)

and the new distance is defined as

r′ =
L

π

√

√

√

√

3
∑

i=1

sin2
(πxi

L

)

(4.4)

In doing so, we have only to compute gradients and Laplacian with the chain rule:

Φ(r′)

∂xi

=
∂Φ(r′)

∂r′
∂r′

∂x′i

∂x′i
∂xi

∂2Φ(r′)

∂x2
i

=
∂2Φ(r′)

∂r′2

(

∂r′

∂x′i

∂x′i
∂xi

)2

+
∂Φ(r)

∂r′

[

∂2r′

∂x′2i

(

∂x′i
∂xi

)2

+
∂r′

x′i

∂2x′i
∂x2

i

]
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where

∂x′i
∂xi

= cos
(π xi

L

)

∂2x′i
∂x2

i

= −π
L

sin
(π xi

L

)

This transformation has been applied to all orbitals appearing in the wave-function

and also to the one-body term and the two-body Jastrow.

We remark here that also the normalization constant of a given orbital has to be

changed in a periodic system. Namely its integral over the simulation cell has to

be equal to one.

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2

φ2(riA) dx dy dz = 1 (4.5)

For instance a normal Gaussian in three-dimension:

Φ(r) =

(

2k

π

)3/4

e−kr2

(4.6)

becomes after the substitution4.3:

Φ′(r′) =

(

Le−
kL2

π2 I0

[

kL2

π2

])−3/2

e−kr′2 (4.7)

whereI0 is the modified Bessel function of the first kind andL is the size of the

simulation box andr′ is the periodic distance4.4.

4.1.2 The wave-function for high pressure hydrogen

In order to study the high pressure hydrogen we used the periodic generalization of

the JAGP wave-function defined in the chapter 1. In the two-body 1.2.3terms and

one-body1.2.2terms the distances electron-electron and electron-ion are replaced

with the periodic distance:

∣

∣

∣

~ξi − ~ξj

∣

∣

∣
=
L

π

√

sin2
[π

L
(ξ1

i − ξ1
j )
]

+ sin2
[π

L
(ξ2

i − ξ2
j )
]

+ sin2
[π

L
(ξ3

i − ξ3
j )
]

(4.8)
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whereξ indicates electron and proton coordinatesri,Ri. Both in the pairing de-

terminant1.2.1and in the three-body Jastrow1.2.4we used one orbital per atom

as basis set. In the first one we used periodic Gaussian orbitals 4.6 while in the

second2s orbitals defined as:

φ2s(r) = r2e−zr

where the distance between electrons is defined as4.8. We found that this basis

set was sufficient to describe accurately the systems studied.

4.2 Coulomb Interactions in periodic systems

In the evaluation of the potential energy in a periodic system the interaction with

all possible images has to be considered. This fact could make very inefficient the

simulation of periodic systems. The Coulomb interaction ion-ion, ion-electron

and electron-electron can be generally written as:

U =
1

2

∑

~ξi 6=~ξj+~Rs, ~Rs

qiqj
∣

∣

∣

~ξi − ~ξj + ~Rs

∣

∣

∣

, (4.9)

whereξi indicates electron coordinates~r corresponding toqi = −e and proton

coordinatesRi corresponding toqi = +e and~Rs are the vectors of the periodic

lattice associated with the simulation box. Notice that this summation converges

only for neutral systems
∑

qi = 0. For short range interaction it is possible to

consider only the closest images, that represents an efficient and accurate way to

calculate the potential energy. For long range interactionthe equation eq.4.9can-

not be used in a numerical simulation because the sum is very slowly convergent,

so other approaches are necessary.

It is not possible to use a truncated Coulomb potential. In fact, large inaccuracies

are introduced by neglecting the long-range part (see Ref. (78)).

In the following we present the well known Ewald method that allows to evaluate

in an efficient way the potential energy in periodic systems.

4.2.1 Ewald Sums

In 1921 Ewald (79) proposed an efficient way to recast the summation4.9 in two

rapidly converging series. Here in order to derive in a systematic and controlled
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way the final result we consider a Yukawa potentialv(r) = e−ǫ|r|/|r| and take the

limit |ǫ| → 0 only in the final expression. Following the Ewald’s idea we split the

potential in two parts:

v(|r|) = vlong(|r|) + vshort(|r|) (4.10)

where

vshort(|r|) = v(|r|)erfc(
√
α|r|) (4.11)

vlong(|r|) = v(|r|) − vshort(|r|) = erf(
√
α|r|)v(|r|), (4.12)

erf is the error function anderfc the complementary one. Notice that the long

range part has several important properties:

lim
r→0

vlong(r) = 2
√

α/π (4.13)

vlong(k) = 4π/k2e−k2/(4α) for ǫ→ 0 (4.14)

vlong(k = 0) = 4π/ǫ2 finite only for ǫ > 0 (4.15)

On the other hand the short range potential decays very fast in real space and

the sum converges very quickly. SinceU in Eq.(4.9) depends linearly on the

potential, we can easily decompose two contributions: a short-range and a long

range one. Then the latter can be more easily evaluated in Fourier space:

U = Ushort−range + Ulong−range

Ushort−range =
1

2

∑

ξi 6=ξj+Rs,Rs

qiqjvshort(|ξi − ξj +Rs|)

Ulong−range =
1

2

∑

ξi,ξj ,Rs

qiqjvlong(|ξi − ξj +Rs|) −
1

2

∑

i

vlong(r → 0)q2
i

=
1

2V

∑

~k 6=0

∑

i,j

qiqje
i~k(ξi−ξj)vlong(k) −

√

α

π

∑

i

q2
i

whereV is the volume of the unit cell and the sum over the momenta are on the

discrete~k values allowed by the periodicity~k · ~Rs = 2πn. In the latter expression

we have used Eq.(4.15) and the fact that the charge neutrality
∑

i qi = 0 implies

that the~k = 0 term can be omitted in the sum for anyǫ > 0. In this way the

limit ǫ → 0 can be found consistently also for long range potentials by replacing
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expression (4.14) in the corresponding Fourier transform forvlong. For a non

neutral system instead the Ewald sum is divergent as expected.

For Coulomb interaction the potential energy becomes:

U =
1

2

N
∑

i,j

∑

Rs

qiqj

~rij + ~Rs

erfc
(√

α(~rij + ~Rs)
)

+
1

2

∑

~k 6=0

N
∑

i,j

4πqiqj

V |~k|2
ei~k(~ri−~rj)e−|~k|

2
/4α −

√

α

π

N
∑

i=1

q2
i . (4.16)

In the potential energy4.16 the parametersα determines the convergence

speed in the real and Fourier space series. For a given choiceof α we have chosen

a real-space cutoff distancerc and akc cutoff in the Fourier space. The cutoff

kc determines the total number of Fourier components,(4π/3)n3
c, wherenc is a

positive integer. This parameter has been choosen in such a way that the error on

the Ewald summation is much smaller than the Quantum Monte Carlo statistical

one.

A careful choice of the parameterα can minimize the error in the summation (see

Ref. (80)). In our simulation we have chosenα = L/5, whereL is the size of the

simulation box. With this cutoff it is sufficient to sum the short range part in the

eq. 4.16only on the first image of each particle. Notice that during each VMC

or DMC simulation the ionic coordinates are fixed throughoutthe calculation.

Therefore the contribution of the ion-ion Coulomb interaction in the short-range

part can be evaluated only at the beginning of the simulation. As an electroni is

moved during a VMC calculation the sum of the short range partof the eq.4.16is

easily updated subtracting the old contribution electron-electron and electron-ion

due to the electroni, and adding the new one.

The sum in Fourier space can be written as:

Uk =
∑

~k 6=0

4π

V |~k|2
e−|~k|2/4α 1

2





(

N
∑

i

sin(~k~ri)

)2

+

(

N
∑

i

cos(~k~ri)

)2


, (4.17)

then for each~k vector all sin and cos are stored in such a way that when an

electron moves, the sum can be easily updated without calculating all the elements

from scratch.

It is easy to understand that the Ewald summation scales asO(N2). In fact the
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updating of the eq.4.16costsN times the number of Fourier’s components. Then

the number of Fourier component goes as(1/α)3 whereα is proportionalL and

for a given density scales asN . The Ewald sums are faster than the QMC sweep

and so, even if nowadays other faster techniques exist, as for instance particle-

mesh-based one, it was not necessary to adopt other more complicated methods

in our calculation.

4.2.2 Forces with finite variance in periodic systems

The method present in section1.1.1can be easily generalized to periodic systems.

It is sufficient use an auxiliary periodic functioñΨ with the same behavior of1.12

close to nuclei. We have used the following form:

Ψ̃PBC = QPBCΨT

Qν
PBC = ZA

Nelect
∑

i=1

L
2π

sin
(

2π
L

(xν − Rν
A)
)

r′iA

wherer′iA is the periodic distance between the nucleusA and the electroni:

r′iA =
L

π

√

sin2
(π

L
(x1

i −R1
A)
)

+ sin2
(π

L
(x2

i −R2
A)
)

+ sin2
(π

L
(x3

i −R3
A)
)

.

(4.18)

Notice thatΨPBC is a periodic function because we are using a periodic trial

wave-functionΨT (see section4.1.2). This auxiliary functionΨPBC removes the

divergence in the bare force and it is consistent with the periodicity of the system.

At variance of the case without periodic boundary conditions∇2QPBC does not

cancel exactly the term coming from the derivative of the ion-electron potential.

Therefore we have to included both the Laplacian of theQPBC and the derivatives

of the ion-electron potential in the calculation of the forces. More precisely the

expression we used for the force is:

F̃ ν = F ν
bare −

1

2
∇2Qν

PBC −
~∇Qν

PBC
~∇ΨT

ΨT
(4.19)
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4.3 How to evaluate pressure

Following the seminal paper of O.H. Nielsen an R.M. Martin Ref. (81), the pres-

sure can be expressed as the negative trace of the stress tensor Tαβ:

Tαβ =
∂

∂ǫαβ

〈Ψǫ|H|Ψǫ〉
〈Ψǫ|Ψǫ〉

(4.20)

where theΨǫ is the wave-function ”stretched” by the transformation on each par-

ticle riα → riα +
∑

β ǫαβriβ whereǫαβ is a symmetric strain tensor. The pressure

is then defined through the negative trace of the stress tensor:

3PV = −Tr[Tαβ] (4.21)

For an isotropic system, as the one we studied, the pressure can be easily written

as:

3PV =
∂〈El〉
∂V

=
∂〈El〉
∂L

3L2. (4.22)

whereV = L3 andL is the edge of our cubic box. To evaluate this derivative

it is convenient to write the energy using rescaled distances that are invariant for

stretching of the simulation box, namelyr′ = r/L. After this transformation the

expectation value of the energy can be written as:

〈El〉 =
〈E ′

kin〉
L2

+
〈E ′

pot〉
L

, (4.23)

whereE ′
kin andE ′

pot are the kinetic and the potential energy in the new coordi-

nates. Thus the pressure will be:

P =
1

3V

[

2
〈E ′

kin〉
L2

+
〈E ′

pot〉
L

]

+
2

3V
[〈OLH〉 − 〈OL〉〈H〉] , (4.24)
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whereOL is the logarithmic derivative of the wave-function respectto the simu-

lation box sizeL:

OL =
∂LΨT

ΨT

(4.25)

Notice that the box sizeL appears in the one-body terms and in the two-body

terms due to the cusp condistions, see AppendixC. The first part of the expression

4.24is the usual Virial Theorem and the second one is given by the contribution

due to the Pulay stress tensor. In fact although we used rescaled coordinates, it is

not possible to cancel the dependencies of the wave-function from the simulation

box size. This is due to the nuclear and electronic cusp conditions that depend

explicitly onL (see AppendixC).

In the expression4.24 only the electronic kinetic energy is considered. When

we perform a dynamic on the ionic part, we have to add the pressure due to the

momentum flux carried by the ions. This part can be easily calculate with the

standard kinetic theory (see Appendix B of Ref. (82)) of gas, and it reads:

〈Pionic〉 =
2N

3V
〈Eionic

k 〉, (4.26)

the total pressure will be the sum of the ionic4.26and electronic part4.24.

4.4 Empirical laws of melting

Although in general the melting and freezing transition is non-universal, there are

some useful phenomenological criteria which are usually based on the proper-

ties of only one of the two coexisting phases. The advantagesof these empirical

rules is that they permit an estimation of the solid-liquid coexistence line, without

carrying out any free energy calculation.

The empirical rule of bulk melting is the so called Lindeman criterion accord-

ing to which a crystal melts when the amplitude of thermal vibrations (r.m.s.) ex-

ceeds a given thresholds of the order of the lattice space (83). For many materials

this Lindemann ratio is about of≃ 0.15 of the lattice space.

Another interpretation of the Lindemann criterion is that an infinite solid will

become mechanically unstable at a sufficiently high temperature. Although the

ideal mechanical instability temperature of a solid is different, and of course some-

what higher than the true melting temperatureTm (where the free energy crossing
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of solid and liquid phases takes place),nonetheless it can be heuristically taken as

a qualitative indicator of the tendency of the solid to melt.
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Chapter 5

A new technique for the simulation

of electronic systems at finite

temperature by means of noisy

QMC forces

The most common application of computer simulations is to predict the properties

of materials. Since the first works, by Metropolis et al. and Fermi et al. (27; 84),

Molecular Dynamic (MD) techniques turned out to be a powerful tool to repro-

duce the properties of materials in different conditions and also to predict them.

The combination of these techniques with the density functional theory (DFT)

has become a widely accepted and powerfulab-initio method: the Car-Parrinello

Molecular Dynamics (CPMD) (54) that has allowed to study a broad range of

chemical, physical and biological systems. The CPMD approach offers a balance

of accuracy and computational efficiency that is well suitedfor both static and

dynamic calculations of numerous properties of systems with hundreds and even

thousands of atoms. Although in principle DFT is an exact theory for the electron

correlation, it relies on an unknown exchange and correlation functional that must

be approximated. The widely used Local Density Approximation (LDA) is dif-

ficult to improve systematically. Therefore, in some cases (see for instance Ref.

(85)), one requires a more accurate computational approach, such as the quantum

Monte Carlo (QMC) approach to solve the Schrödinger equation very accurately.
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In this thesis, we present a new method that treats the electrons within the many-

body QMC and perform Molecular Dynamic ”on the fly” on the ions. This method

provides improved dynamical trajectories and significantly more accurate total en-

ergies.

In the past two different approaches were proposed to coupleQuantum Monte

Carlo with ionic Molecular Dynamic. The first, called Coupled Electronic-Ionic

Monte Carlo (CEIMC) (8), is based on a generalized Metropolis algorithm that

takes into account the statistical noise present in the QMC evaluation of the Bohr-

Oppenheimer surface energy. In the second approach, calledContinuous Diffu-

sion Monte Carlo (CDMC) (64), the Molecular Dynamics trajectories are gener-

ated with some empirical models or by CPMD-DFT, and then the CDMC tech-

nique is used to efficiently evaluate energy along the trajectories. Both methods

present some drawbacks. In the second method even if all the properties are eval-

uated using the Diffusion Monte Carlo, the trajectories aregenerated using empir-

ical models without the accuracy given by the QMC for the structural properties,

as radial distribution, bonding lengths and so on. Instead,in the first one the QMC

energies are used to perform the Monte Carlo sampling leading to accurate static

properties. In order to have a reasonable acceptance rate within this scheme sim-

ulations have to be carryed out with a statistical error on the energy of the order

of KbT Furthermore, in order to have a fixed acceptance rate the amplitude of the

ionic move has to be decreased with the size of the system.

The method we present here, allows to solve two major drawbacks of the previous

two techniques. Following the idea of Car and Parrinello (54) we will show that

it is possible to perform a feasibleab-initio Molecular Dynamics and structural

optimization in the framework of the Quantum Monte Carlo by using noisy ionic

forces, and with a method that do not contain any rejection scheme, at the expense

of a time discretization error, that is present in any type ofMD scheme.

5.1 The Born-Oppenheimer approximation

The idea of treating ionic dynamics classically, while electrons are in the ground-

state of the Hamiltonian4.1, is based on two very reasonable approximations: the

Born-Oppenheimer Approximation(BO) and the Adiabatic one.

In a system of interacting electrons and nuclei there will beusually small momen-
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tum transfer between the two types of particles due to their very different masses.

On the time-scale of nuclear motion, one can therefore consider the electrons

to relax in the ground-state given by the Hamiltonian with the nuclei at fixed loca-

tions. This separation of the electronic and nuclear degrees of freedom is known

as the Born-Oppenheimer approximation. Moreover since theenergy scale asso-

ciated with the electronic excitations is usually much larger than to the one related

to the ionic motion, one can safely consider the electron in their own ground-

state. Although this approximation is not always fulfillid even in the worst case,

for the simulation of the lightest atom, hydrogen, Galli et al. (21), using the Car-

Parrinello molecular dynamics with DFT, showed that the electronic band-gap is

about2eV and that the first order correction due to the quantistic effects on ions

is about2meV for pressure up to200GPa.

Although there are techniques, as Path Integral Monte Carlo, to treat finite tem-

perature quantum systems, they become extremely inefficient for low temperature

regime, therefore we have preferred to simply neglect quantum effects due to the

finite protons mass.

5.2 Dealing with Quantum Monte Carlo noise

Recently different method were proposed to evaluate forcesby Quantum Monte

Carlo with a finite and small variance (29),(52),(86) (see also section1.1.1for a

discussion about zero-variance principle).

It is well known that noisy forces can be used in different wayfor obtaining,

following a first order stochastic differential equation, the Canonical distribution.

For instance it is possible to use the Langevin dynamic defined by:

ẋi = βij

(

− ∂V

∂xj
+ ηj

)

(5.1)

〈ηi(t)〉 = 0 (5.2)

〈ηi(t)ηj(t
′)〉 = αij(x)δ(t− t′), (5.3)

whereη is a random noise with varianceαij(x) and zero mean. It is easy to

show, using the Fokker-Plank equation associated to this equation, that in or-

der to obtain the usual Boltzmann distribution the matrixβ has to be chosen

asβ = α−1KbT . The problem to obtain the desired canonical distribution may
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be therefore solved in this way. In QMC one can calculate the covariance matrix

αij(x) = 〈fifj〉−〈fi〉〈fj〉 and then invert this matrix to obtainβ and continue the

dynamics. This method is unfortunately very unstable, because the matrixα−1

can be ill-defined because of statistical fluctuations. Moreover it is not possible to

estimate the error on the temperature simulated.

Here we present a new method that uses these QMC forces to perform a Molecular

Dynamics at finite temperature. In the past the major problemof using QMC to

performab-initioMolecular Dynamic was the presence of the statistical noise, but

now we will show that this noise can be efficiently used as thermal bath. We called

this method Generalized Langevin Dynamics by Quantum MonteCarlo (GLQ).

In our simulation there exists a correlated noise associated to the forces. We rely

on the central limit theorem implying the noise in all component of the forces

evaluated by QMC is Gaussian with a given covariance matrix.We used the Jack-

knife re-sampling method (see AppendixA) to estimate the covariance matrix.

The idea of the GLQ is to use this noise to produce a given finitetemperature

using a Generalized Langevin Equation. The use of the Generalized Langevin

Equation (GLE) as thermostat is not new. In the past some authors have used this

approach to simulate different systems. This method was applied for the fist time

by Schneider and Stoll (87), to study distortive-phase transitions. Later the GLE

was used to simulate different systems and also to stabilizethe usual Molecular

Dynamic method (88).

5.3 Canonical ensemble by Generalized Langevin Dy-

namics

In order to simulate the canonical ensemble we use a Langevindynamics and we

assume that our system is coupled with a thermal bath due to Quantum Monte

Carlo statistical noise plus an additional friction term:

{

v̇i(t) = −γij(x)vj(t) + fi(x(t))
mi

+ Γi(t)

ẋi(t) = vi(i)
(5.4)
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with

〈Γi(t)Γj(t
′)〉 = αij(x)δ(t− t′) (5.5)

〈Γi(t)〉 = 0. (5.6)

whereΓ is a generic Gaussian noise that implicitly contains the oneassociated to

the statistical evaluation of the forces by QMC. Notice thatin this case an explicit

dependence onx of the noise has been taken in account. This is a realistic case that

has not been considered so far not even in (89). In the following we determinate

a form for the friction matrixγij(x) that allows to converge the usual Boltzmann

distribution at a given temperature.

To this purpose we write down the corresponding Fokker-Planck equation.

Following (90) we have to evaluate the drift and the diffusion coefficient:

Di(x, t) = lim
τ→0

1

τ
〈xi(t+ τ) − xi(t)〉 (5.7)

Dij(x, t) =
1

2
lim
τ→0

1

τ
〈[xi(t+ τ) − xi(t)][xj(t+ τ) − xj(t)]〉 (5.8)

A straightforward calculation shows that:

Dxi
(t) = vi(t) (5.9)

Dvi
(t) = −γij(x)vj(t) +

fi(t)

mi
(5.10)

Dxi,xj
= Dxi,vj

= 0 (5.11)

Dvi,vj
=

αij(x)

2
(5.12)

And so the corresponding Fokker-Plank equation will be:

∂W (x, v, t)

∂t
=
∑

i

{

∂

∂xi

vi +
∂

∂vi

[

−γij(x)vj +
fi

mi

]

+
∂

∂vi

[

αij(x)

2

∂

∂vj

]}

W (x, v, t)

(5.13)

Then the friction matrix̂γ is chosen in a way that the stationary solution of the

Fokker-Planck equation is the canonical distribution:

peq(v1, ..., vn, x1, ..., xn) ≃ e−βH . (5.14)

More precisely by substituting the Boltzmann distribution

Weq(x, v) = e
−

P

i
miv2

i
2 −V (x)

KT (5.15)
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in the equation5.13we obtain:

γij(x) =
αij

2
(x)βmj (5.16)

So for a given noise on the forcesαij and the desired temperature we can set the

friction tensor using eq.5.16in order to obtain the Boltzmann distribution.

Notice that the external random noise scale as
√
τ (see also Ref. (90)) whereas

the QMC noise scales asτ . Therefore in the limitτ → 0 if we do not add any

external noise and we setγ̂ according to eq.5.16, the system will converge to

the Newton dynamics at zero temperature. Nevertheless adding an appropriate

external noise it is possible equilibrate the system to the canonical ensemble at

the desired temperature.

A peculiar feature of this approach is that in the limit of small τ the statistical

error on the forces becomes irrelevant becauseτ ≤ √
τ .

The stability of this approach compared with the first order Langevin Dynamic

is now evident, in fact there is no need to calculate the inverse of the covariance

matrix. Moreover in the second order Langevin Dynamics the temperature can be

estimated at posteriori by equality:

3

2
KBT =

1

2
M〈V 2〉, (5.17)

compensating the error in the integration of the GLE.

5.3.1 Numerical integration of the Generalized Langevin Equa-

tion

In the literature there are different algorithms to integrate numerically the Gen-

eralized Langevin Equation. The most common ones are the BBK(91), vGB82

(92) and the Impulse Integrator (LI) (93). All of them, in the limit of Newtonian

dynamics, asγ → 0, reduce to the well known Verlet method:

xn+1 = 2xn − xn−1 + τ 2F (xn)

M
. (5.18)

Although these methods offer good numerical accuracy, other criteria have to be

considered for the choice of the algorithm. In our approach the friction is related

to the quantum Monte Carlo noise, and so, in order to simulatelow temperate
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phases, it can happen that we are forced to use a large friction matrix. Due to

this, an integration algorithm that allows to work accurately with a large friction

is required. In the limit of large friction, or equivalentlymi → 0 the eq. 5.4

reduces to the simple Brownian dynamics. In this case the BBKscheme becomes

unconditionally unstable (94), and this fact automatically excludes this algorithm.

Instead the other two schemes reduce respectively to the second-order explicit

Adams formula and to the Euler-Maruyama method (see Ref. (93)). In this thesis

we have decided to use the Impulse Integrator proposed by Skell and Izaguirre

(93) that achieves a good accuracy (see AppendixE) and it is simple to implement.

Moreover in order to integrate the Langevin dynamics5.4we have generalized this

algorithm to a non-diagonal friction tensor. So we rewrite the equation5.4 in the

simpler form:

v̇ + Av = g (5.19)

whereA is the friction tensor andg = f
m

+ Γ. The forcesF are evaluated with

QMC, Γ contains therefore the noise of the QMC evaluation off and a possible

additional external generated noise. The friction tensor is assumed to be deter-

mined without noise but can explicitly depend on the atomic positions. 1. Then

we factorize the matrixA = LΛLT , whereΛ is a diagonal matrix andL contains

the corresponding eigenvectors. Substituting this factorization into eq.5.19:

LT v̇ + ΛLT v = LT g (5.20)

Defining the vectorsw = LTv we obtain:

ẇ + Λw = LT g. (5.21)

Now the equation is in the usual diagonal form with the new forcess = LTg.

We assume that the friction matrix is slowly varying compared to the forcesg

and so the usual integral scheme LI(93) is used for the variablew. Finally the

transformationv = Lw is applied to come back to the original variables. The

final integration formula is:

rn+1 = L(I + e−Λτ )LT rn − Le−ΛτLT rn−1 + LτΛ−1(I − e−Λτ )LT g (5.22)

1Strictly speaking in the following we relateγ to the covariance matrix, that then is evaluated

statistically. We neglect here this statistical noise.
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Then we can write the final formula to obtain velocities:

vn = L
Λe−Λτ

I − e−Λτ
LT (rn − rn−1) + Lτ

(

I − e−Λτ − I + Λτ

Λτ(I − e−Λτ )

)

LT g (5.23)

5.4 Practical implementation of the finite tempera-

ture dynamics

In the same spirit of the Car-Parrinello dynamics, at each ionic move, eq.5.22,

the parameters are optimized using eq.2.31. This has allowed us to relax the

wave-function to the energy minimum during the ionic dynamics . We call this

technique Generalized Langevin Dynamics using Quantum Monte Carlo noisy

forces(GLQ).

In order to simulate finite temperature systems using the GQLdynamics some

control parameters has to be fixed for an efficient scheme. Letus imagine that we

want to simulate a system at given temperatureT and densityrS. First of all we

have to choose the friction tensor. Two choices are possible: the first one is to

work with the friction as small as possible, compatibly withthe QMC noise, in

order not to affect dynamic properties; the second choice isto choose the friction

in such a way to achieve the maximum convergence speed. In this thesis we

did not investigate dynamical properties and so we opted forthe second choice.

Second, we have to determine the two parametersr and∆ see eq.2.33and5.22.

We have chosenr as big as possible to have a stable optimization. Instead∆ has

been chosen enough small to allow the Hessian optimization to follow the ionic

dynamics. This can be easily checked controlling if the forces2.11are zero within

a given accuracy. For example for a system of16 hydrogen atoms we have used

a time step∆ of the order of0.3fs for a temperature around100K. For higher

temperature in order to maintain the same precision betweenionic dynamics and

optimization of parameters the time step∆ is roughly rescaled as∼ 1/
√
T in

such a way to maintain the same mean ionic step〈|∆R|〉 ∼
√

〈v2〉∆. Moreover

to have a stable minimization not all parameters have to be changed at each ionic

step but only the most relevant, see the forthcoming section5.4.3.

Thanks to GLQ technique we were able to simulate reasonably large systems, by

using highly correlated wave-functions with many parameters (see figure5.1) and

with essentially a single processor machine.
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Figure 5.1: Ionic dynamics of 54 hydrogen atoms using GLQ, with a time step

0.4fs, starting from a BCC lattice. The trial wave-function contains 2920 varia-

tional parameters and we have optimized 300 of them at each step. In the inset the

maximum deviationFi/∆Fi of the forces acting on the variational parameters is

shown.

Figs/54opt.eps
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5.4.1 Setting the parameters in the Langevin dynamics

Parameters of the Eq.5.22can be tuned in different ways according to what we

want to simulate. As shown by Ref (87; 88) the Generalized Langevin Dynamic

allows to study dynamical properties with the condition that the friction termγ is

small compared to the typical frequencies of the system, in fact too largeγ over-

damps the low-frequency vibrational modes (see Ref. (95)). Therefore in order

to have the desired smallΓ the only possible solution is to increase the VMC bin

length in such a way that the VMC noise decrease to the desiredvalue.

On the other hand if only static properties are required it ispossible to tune GLE

parameters in a more efficient way. In fact, although by our method it is possible

to work only with QMC noise, it can be convenient sometimes toadd external

noise to the forces for different reasons.

Let us imagine to simulate a system at high temperature. In that case there are two

possibilities: either the bin length used to evaluate the forces has to be decreased in

order to increase the QMC noise, or the friction has to be rescaled according to Eq.

5.16that implies a corresponding reduction of the dissipation in the system. But

both these solutions present some problems. In the first caseone cannot decrease

the bin length below a certain threshold otherwise the hypothesis of Gaussian

noise is no longer fulfilled and the optimization algorithm becomes unstable; in

the second case the use of a very small friction matrix leads to a long convergence

time that is related to the smallest eigenvalues of theγ matrix τ ≃ 1
γmin

.

For these reasons we found that is more convenient to add external noise to the

system, in such a way to produce the desired temperature witha given bin length

and to maintain the friction matrix not too small. To this purpose we have added

a Gaussian noise with diagonal correlation matrix:

Γ′
i(t) = Γi(t) + η(t) (5.24)

〈ηi(t)ηj(t
′)〉 = βijδ(t− t′) (5.25)

〈Γi(t)ηj(t
′)〉 = 0 (5.26)

〈Γ′
i(t)Γ

′
j(t

′)〉 = (αij + βij) δ(t− t′) (5.27)

This procedure allows us to achieve the maximum efficiency when it is possible

to set theγ as close as possible to the critical dumping of the system (see Tassone,

Car and Mauri Ref. (96)).
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5.4.2 Following the ionic dynamics

A reasonable approximation for the physical forces acting on the ions are the

ones calculated when the electronic system is at the energy minimum with the

chosen variational ansatz. Therefore in order to generate the correct dynamical

trajectories for the ions it is extremely important to relaxthe trial function to the

minimum energy at each ionic time step. As shown by differentauthors first-order

optimization methods, as stochastic gradient or stochastic reconfiguration, defined

by:

ψ̇ = S−1 ~f, (5.28)

whereS is a positive definite matrix, and~f is the vector of the generalized forces

eq. 2.11fails to follow a second order dynamics (97). This causes a systematic

error in the ionic forces, because the wave-function is not at the energy minimum.

To overcome this problem many techniques were used, such as Car-Parrinello

dynamics ((54)), or conjugate gradients ((97)). In our work we used a new tech-

nique that is suited very much for energy optimization by means of Quantum

Monte Carlo, the SRH method. The major advantage of this method is that it

uses the information coming from the Hessian. Thanks to the Hessian matrix this

method is able not only to follow the direction of the minimumbut also to estimate

the distance from the minimum for each parameter in such a wayto converge in

few steps. Moreover, if we start from an optimized trial function and we move the

ions not too fast, we can maintain the system in a regime in which the quadratic

approximation is always valid so that in principle the Hessian optimization con-

verges always in one step.

5.4.3 Reducing the number of parameters

After each ionic move it is important to optimize the trial function to be as close

as possible to the variational ground state. The point is that there are some parts

of the wave function that vary a bit between different ionic configurations, as for

example the two-body Jastrow factor or the core orbitals forlarge ions. So it is

not important to move all parameters at each step, but it is fundamental to rec-
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ognize which ones have to be optimized because they are far from the minimum.

Moreover since we are performing an optimization in the presence of noise it is

possible to know the exact minimum only within a given statistical error due to

the finite sampling. So we fix a toleranceξ and move only such parameters whose

generalized forces satisfy:
|Fi|
∆Fi

≥ ξ (5.29)

we have chosenξ ≃ 4 that amounts to change on average the20% of the varia-

tional parameters. This procedure has allowed us to follow the ion dynamic with

a stable and fast optimization on the variational parameters. Moreover to stabilize

the optimization procedure other two cautions were used:

1. It is very difficult to parametrize an highly correlated wave-function with many

parameters. In fact it happens often that in this case the stochastic matrix becomes

singular because there are too many parameters redundant todescribe the wave-

function and some of them have to be eliminated for a stable optimization scheme,

see section2.1.2.

2. It can happen that the Hessian Matrix is not positive definite, this can be due

to different reasons: a statistical fluctuation due the finite sampling or because

the trial-function is far from the minimum, in this case the correction, proposed

in Ref. (50) and described at the end of section2.3, is used. In our simulations

we have used0.2 as a threshold value for ther parameters that rules the stability

of the SRH optimization (see section2.3). This has achieved a fast and stable

convergence of the wave-function.



Chapter 6

Preliminary results on high pressure

hydrogen

6.1 Comparison with previous calculations

In order to check the quality of our trial-function we compared the energy and the

variance on different configurations with the ones obtainedusing other functional

form for the trial wave-function (7; 37). In the table6.1 the energy and the vari-

ance for a BCC lattice with16 hydrogen is reported. As one can see our wave

function gives a very good energy. The variance is not so low and this is probably

due to the lack of back-flow correlation or to the energy optimization.

Moreover we compare the energies and variances obtained on different con-

Table 6.1: Total energies in variational (EV MC) and diffusion (EDMC) Monte

Carlo calculations for 16 hydrogen atoms in a BCC lattice at Rs=1.31 and T=0

(i.e. frozen ion positions). The energies are inHartreefor atom.

WF EV MC σ2

V MC
EDMC

SJ -0.4742(2) 0.0764(2) -0.4857(1)

SJ3B -0.4857(2) 0.0274(2) -0.4900(1)

LDA -0.4870(10) -0.4890(5)

JAGP -0.4871(5) 0.0700(1) -0.49019(5)

JAGP − reduced -0.4846(2) 0.067(1) -0.4880(1)
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figurations generated with the CEICM method (8). In the figure6.1 the first ten

configurations are obtained atT = 2000K. Then the system is cooled to500K

and it starts to clusterize. If we compare the wave-functionof Holzmann et al.

(8) with the JAGP wave-function we can see that the latter one gives an accurate

description of both the liquid and the cluster phase. This isdue to the resonating

nature of the JAGP trial-function that allows to describe the liquid phase through

resonating bonds among different atoms.
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Figure 6.1: Energy per atom of 16 hydrogen atoms at Rs=1.31 calculated on con-

figurations obtained by CEIMC with the method (8). The first 10 configurations

are in the atomic liquid phase at 2000k while in the last ten the system is forming

clusters at T=500.

Then we compared the pressure obtained by using the GLQ technique, ob-

tained after equilibration at given temperature and density, with both Gas-Gun
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Table 6.2: Pressure at different temperatures and densities. We report also the

pressure obtained with Gasgun experiment (5), with Silvera-Goldman empirical

potential model (6) and CEICM method (7) atΓ point. The pressure are in GPa.

rs T Gasgun S-G CEICM-VMC CEICM-DMC GLE-VMC

2.202 2820 0.120 0.116 0.105(6) 0.10(5) 0.144(8)

2.1 4530 0.234 0.234 0.226(4) 0.225(3) 0.246(9)

1.8 3000 - 0.528 - 0.433(4) 0.410(8)

experimental results1 and numerical simulations done with CEICM method (7).

In the table6.2we report the pressures calculated for different densitiesand tem-

peratures. The pressure was obtained as explained in section 4.3.

As it is shown the combination of GLQ with the JAGP wave-function provides a

good agreement with the experimental values already with this small size.2.

6.2 Pair Correlation Functions

In this section we report the proton-proton pair correlation functions for differ-

ent densities and temperatures obtained by using the GLQ technique. The pair

correlation function is defined (see Allen Tildesley (98)) as:

g(r) =
V

N2
〈
∑

j 6=i

δ(r − rij)〉 (6.1)

The pair distribution function is a useful property becauseit provides insights

for the liquid or solid structure. We compared the obtained proton-proton distri-

bution functions with the ones reported in Ref. (7; 99) for different densities .

Hohl et al. (1993) have performed DFT-LDA simulations at rs =1.78 and

T=3000K, the resulting proton-proton distribution functions are compared in6.3.

The lack of accuracy of Local Density Approximation (LDA), used by Hohl et.

1 In the Gas-Gun experiments extraordinarily high pressuresare created by the gas gun, oc-

curring during explosions. The high pressures of a shock wave make materials denser and heat

them to thousands of degrees.
2Notice that our calculations are done atΓ point. Moreover we used 32 atoms and this does

not fulfill the closed-shell condition increasing further the size effects.
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al, and the small size, we simulated, can account for the differences in the location

of the peak. The discrepancy between CEIMC and GLQ is not clear at present. It

can be explained by the nature of the wave-function used in CEICM that does not

describe well the molecular disassociation (7). Nevertheless at densityRs = 1.31

the inter-atomic distances are comparable with the typicalbonding length of the

hydrogen molecule and we have found a tendency to filament formation in agree-

ment with the results of Hohl and Ceperly (99).

6.3 Another possible phase in liquid hydrogen

The Resonant Valence Bond state has been shown to describe accurately frustrated

spin systems. It appears that in many systems superconductivity is realized when

the system in the normal state is quite close to metal-insulator transition even in

presence of strong disorder, see Ref. (100). The large mass difference between

ions and electrons leads, in a good approximation, to two distinct dynamics. This

allows us to consider always the electrons in the ground state of a disordered ionic

system at finite temperature, and from this point of view it is”similar” to an av-

erage on disorder. Following this hypotheses we tried to study the possibility of

stable superconducting phases driven by correlation closeto the metal-insulator

transition and solid-liquid transition. Moreover as in high-Tc superconductor, we

expect that due to the small size of the Cooper pair a superconductive state can be

more stable close to a disordered phase (101).

In order to detect superconductivity we have calculated thecondensation energy

on different configurations in the liquid phase, with VMC andDMC. The conden-

sation energy, in a variational scheme, is defined as the energy difference obtained

between the best Slater determinant, the normal state, and the AGP. In order to

estimate the condensation energy we have reduced the rank ofthe pairing ma-

trix to N/2. In such limit the pairing determinant is equivalent to a Slater one,

as shown in (2). We optimized the Slater wave-function on given configurations

and we found a non-zero condensation energy (see figure6.5), namely a gain in

energy given by allowing pairing within a variational ansatz. At present we do

not even know whether this gain in energy is macroscopic or isjust a finite size

effect even a the VMC level. The corresponding energy gain, obtained in this way,

certainly overestimate a possible true condensation energy due to a real supercon-
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ducting ground state for high pressure hydrogen. In fact thevariational approach

is certainly biased towards superconducting phases even though recently in the

2D Hubbard model there are other evidences of superconducting phase from non

variational approaches (102).

As shown in the famous paper of Yang (103) a peculiar property of supercon-

ductors is the Off-Diagonal Long-Range Order (ODLRO) exhibited by the re-

duced density matrices in the coordinate space representation (103). For Fermions

ODLRO corresponds to the appearance of an eigenvalue which scales with the

number of particles in the two-body density matrix (103):

ρ2(x1, x2; x
′
1, x

′
2) = 〈ΨN |a+(x1)a

+(x2)a(x
′
1)a(x

′
2)|ΨN〉 (6.2)

Trρ2 =
1

2

∫

ρ2(x1, x2; x1, x2)dx1dx2 =
N(N − 1)

2
, (6.3)

whereN is the number of particles. In a translational invariant system, ODLRO

implies for the two-body density matrix the following asymptotic behavior:

ρ2(x
′
1, x

′
2; x1, x2) = αf ∗(~x′1 − ~x′2)f(~x1 − ~x2) (6.4)

for |x1 − x2| , |x′1 − x′2| ≤ ξ and |x1 − x′1| → ∞ (6.5)

whereα/N is the pair condensate fraction andξ is the size of the pair defined

by the pairing functionf . The functionf is zero for large separation|x1 − x2|
and is≃ 1/V 1/2 for microscopic separation forx1 andx2. In order to estimate

the condensate fraction, following De Palo et al. (104), we resort the two-body

density matrix to the projected density matrix:

h(x, θ, φ) =
1

N

∫

dx1dx2ρ2(x
′
1 + x, x′2 + x; x1, x2) (6.6)

which tends toα in the large x limit. The presence of non positive eigenvalues in

theλ matrix, see figure6.6, led us to investigate the presence of non s-wave su-

perconductivity. Therefore we also evaluatedh(x, θ, φ) as a function of rotations

angleθ, φ of the electron pair in order to investigate the possibilityof different

symmetries.

~x′1 − ~x′2 = Uθ,φ(~x1 − ~x2) and
~x′1 + ~x′2

2
=
~x1 + ~x2

2
+ ~x (6.7)
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A simple estimator ofh(x, θ, φ) is given by

h(x, θ, φ) =
1

Mc

∑

i<j{rij<ξ}

Ψt(r1, r2, ..., r
′
i, ..., r

′
j)

Ψ(r1, ..., rn)
(6.8)

wherer′i, r
′
j is an electron pair translated ofx and rotated ofθ, φ, andMc the

number of pairs translated. A cutoffξ is introduced to speed up the calculation

excluding contributions coming by pairs of far electrons that do not contribute to

the ODLRO because the pairing is short range. We have verifiedthat the cutoff

used does not effect the final result. In practice, for each pair we generate a few

translationsx uniformly distributed in the simulation box and, for betterstatistics,

we also average over all pairs with the conditionrij ≤ ξ.

We argue the possibility of a non s-wave symmetry in the ODLRO, see figure

6.7 and6.8. Unfortunately the size of the studied system is too small togive a

conclusive answer.
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Chapter 7

Conclusions

In this first part of this thesis, we have proposed a new kind a trial-function the

JAGP for QMC. We have tested this wave-function on simple molecular systems

where accurate results were obtained. Within this formulation it was possible

to recover a large amount of the correlation energy at the variational level with

a computationally very efficient and feasible method. Indeed within the JAGP

ansatz, it is sufficient to sample a single determinant whoseleading dimension

scales only with the number of electrons. Moreover the interplay between the Jas-

trow and the geminal part has been shown to be very effective in all cases studied

and particularly in the non trivial case of the benzene molecule. Only when both

the Jastrow and the AGP terms are accurately optimized together, the AGP nodal

structure of the wave function is considerably improved. Infact the Jastrow factor

is an important ingredient because: it takes into account the local conservation of

the charge around each molecule; it allows a fast convergence in the basis set for

the determinant because the electron-electron and the electron-nucleus cusp con-

ditions are satisfied. Nevertheless, in some cases, as for instanceBe2, the used

basis set was not sufficiently large. Anyway all results presented here can be sys-

tematically improved with larger basis set. Moreover we showed that, by using

the Stochastic Reconfiguration optimization, it is possible to perform geometry

optimization as well, and obtain very accurate geometries for the molecules stud-

ied.

In the second part of the thesis we applied the JAGP wave-function to study high

pressure hydrogen. The JAGP wave-function is a crucial ingredient to study cor-
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relation effects. In fact, as it is known from lattice modelswith electronic re-

pulsion, it is not possible to obtain a superconducting ground state at the mean-

field Hartree-Fock level. Instead as soon as a correlated Jastrow term is applied

to the BCS wave function (equivalent to the AGP wave functionin momentum

space(33)), the stabilization of a d-wave superconducting order parameter is pos-

sible. Furthermore the presence of the Jastrow factor can qualitatively change the

wave function especially at one electron per site filling, byconverting a BCS su-

perconductor to a Mott insulator with a finite charge gap(105). When the charge is

locally conserved the phase of the BCS-AGP wave-function cannot have a definite

value and phase coherence is correctly forbidden by the Jastrow factor.

In the second part of the thesis we studied the hydrogen closeto the transition be-

tween the molecular solid to the atomic one, where it is expected a metal-insulator

transition due to the closure of the band gap. We introduced anew technique to

perform a Car-Parrinello like dynamics on ions by Quantum Monte Carlo noisy

forces. This technique opens the possibility to use QMC to study finite temper-

ature system with a reasonable computational effort. The combination of GLQ

technique and JAGP wave-function has allowed us to study theelectronic pairing

structure during the nuclear motion. We have observed a non trivial behaviour

on the eigenvalues of theλ matrix, see figure6.6. This has led us to study the

Off-Diagonal Long Range Order in this system. The study of the ODLRO evi-

dences a non conventional superconductivity. Because of the classical nuclei, this

superconductivity can be due only to correlation effects asin lattice models used

to describe High Tc superconductor (see for instance (106)). Moreover our results

showed that the dominant channel for superconductivity maybe not be s-wave.

Unfortunately the small size of the systems studied does notallow a conclusive

answer. In fact as for lattice models, a finite size scaling isvery difficult to per-

form (107). However motivated by recent results obtained on lattice models using

renormalization group (102) we are planing to study larger systems to clarify our

results. This implies the solution of some technical problems and the reduction of

the size effects as discussed in the following.

The new advances in this thesis can be summarized in three points: a new highly

correlated wave-function; a new technique to study finite temperature system with

QMC; and the possibility, combining the two previous point,s to study exotic

phases due to electronic correlation effects.
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7.1 Future developments

• Reduction of the number of parameters

In the present implementation the JAGP wave-function is parametrized with

an exceedingly large number of parameters. In fact both in the three-body

and in the pair determinant the number of coefficientsλ increases asN(N−
1)/2 whereN is the number of orbitals in the basis set. So even for a system

with only 54 hydrogen atoms we have to optimize about3000 parameters.

Although it is still possible (using the strategies showed in Chapter 6, to

optimize this wave-function following the ion dynamic witha reasonable

accuracy the computational cost) the amount of memory needed to work

with so large matrices make impossible to extend this approach to system

larger than 54 protons.

At this stage we are testing different strategies to overcome this problem:

the most promising is to use a parametric form for theλ coefficients that, to

a first approximation, can be chosen to be dependent only fromthe atomic

distances.

• Improving the wave-function optimization.

Because QMC calculation are very computer demanding, one has to accel-

erate the ionic dynamics as much as possible. But this is not possible up to a

certain threshold otherwise the optimization procedure isnot able anymore

to follow the Bohr-Oppenheimer ionic dynamics. In order to overcome this

difficulty it is possible to change the optimization procedure to converge

not to the minimum of the current ionic configuration, but to be as close as

possible to the one of the following ionic configuration. This approach can

be partially realized with the information we have from the Hessian matrix,

and should allow the use of much larger time steps in the GLE.

• Size effects and TABC.

The computational cost of the Quantum Monte Carlo integration does not

allow to study very large system. In order to make the QMC competitive

one has to reduce as much as possible the size effects. The size effects

derive from the kinetic and the potential energy. We are planing to apply

the Twisted Average Boundary Conditions (76) to our system using a Twist



86 Conclusions

sampling in such a way to integrate dynamically the boundaryconditions

during the simulation. Moreover in these years different strategies were

proposed to reduce the finite size effect due to the long-range potential, and

we are planing to use some of these strategies (108).



Appendix A

Re-sampling methods

There is a simple motivation to use re-sampling methods. In fact let us consider

a set of independent and identically distributed data samplesn of an unknown

probability distributionF :

X1, X2, ..., Xn ∼ F (A.1)

We can compute the sample averagex̄ =
∑n

i=1 xi/n, and then we can estimate

the accuracy of̄x using the standard deviation:

σ̂ =

√

√

√

√

1

n(n− 1)

n
∑

i=1

(xi − x̄)2 (A.2)

The trouble with this formula is that it does not, in any obvious way, extend to

estimators other than̄x. For this reason a generalized version ofA.2 is introduced

such that it reduces to the usual standard deviation when thechosen estimator is

the average.

A.1 Jackknife

Now we briefly describe how it is possible to obtain the standard deviation of

a generic estimator using the Jackknife method. For simplicity we consider the

average estimator. Let us consider the variables:

x̄(i) =
nx̄− xi

n− 1
=

1

n− 1

∑

j 6=i

xj , (A.3)
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wherex̄ is the sample average.̄xi is the sample average of the data set deleting

the ith point. Then we can define the average ofx̄i:

x̄(.) =

n
∑

i=1

x(i)/n. (A.4)

The jackknife estimate of standard deviation is then definedas:

σ̂JACK =

√

√

√

√

n− 1

n

n
∑

i=1

(x̄(i) − x̄(.))2 (A.5)

The advantage of this formula is that it can be used for any estimator, and it re-

duces to the usual standard deviation for the mean value estimator.

In this thesis we always used the Jackknife re-sampling method. Here we

want to show that the connection between the Jackknife and another very used re-

sampling method the Bootstrap. Consider a generic estimator θ(F ) evaluated on

set of datax1, x2, ..., xn of the unknown distributionF . Let us take are-sampling

vector

P ∗ = (P ∗
1 , P

∗
2 , ..., P

∗
n) (A.6)

such that

P ∗
i ≥ 0

n
∑

i=1

P ∗
i = 1

in other words, a probability vector. We can re-weight our data sample with the

vectorP ∗ and then evaluate the estimatorθ̂ on the re-sampled data:

θ̂∗ = θ̂(P ∗) (A.7)

The difference between Bootstrap and Jackknife is in the choice of this re-sampling

probability vector. In the Bootstrap we use:

P 0 =

(

1

n
,
1

n
, ...,

1

n

)

(A.8)

while in the Jackknife

P(i) =

(

1

n− 1
,

1

n− 1
, ..., 0,

1

n− 1
, ...,

1

n− 1

)

. (A.9)

The estimate of the standard deviation is then given by eq.A.2, for a good discus-

sion about Jackknife, Bootstrap and other re-sampling methods see Ref. (109).
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Local Energy and its derivatives

B.1 Kinetic Energy

To evaluate the kinetic energy we rewrite the the kinetic operator as:

− 1

2

∇2
i Ψ

Ψ
= −∇2

i ln Ψ

2
−

(

~∇i ln Ψ
)2

2
(B.1)

Because our trial-function is made as product of different terms:

Ψ = eJeTP (B.2)

we can rewrite the kinetic energy through gradients and laplacian of the logarithm

of each term, namely:

ln Ψ = J(rij) + T (ri, rj, rij) + lnP

~∇ ln Ψ = ~∇J(rij) + ~∇T (ri, rj, rij) +
~∇P
P

∇2 ln Ψ = ∇2J(rij) + ∇2T (ri, rj, rij) +
∇2P

P
−
(

~∇P
P

)2

(B.3)

B.1.1 Derivatives of the Kinetic Energy

We want to calculate the derivatives of the Kinetic Energy respect to a variational

parameter of the wave-function:

∂

∂a

∇2
i Ψ

Ψ
=

∂

∂a
∇2

i ln Ψ +
∂

∂a

(

~∇i lnΨ
)2

(B.4)
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usingB.3 we have that:

∂

∂a
∇2

i ln Ψ =
∂

∂a

(

∇2
i ln eJ + ∇2

i ln eT + ∇2
i lnP

)

(B.5)

=
∂

∂a
∇2

iJ +
∂

∂a
∇2

iT +
∂

∂a
∇2

i lnP

and

∂

∂a

(

~∇i ln Ψ
)2

= 2

3
∑

l=1

[

∂

∂a

(

∇l
iJ + ∇l

iT + ∇l
i lnP

)

]

(

∇l
iJ + ∇l

iT + ∇l
i lnP

)

(B.6)

For the pairing determinant the terms we have to evaluate will be:

∂

∂a
∇l

i lnP =
∂a∇l

iP

P
− ∂aP

P

∇l
iP

P

∂

∂a
∇2

i lnP =
∂a∇2

iP

P
− ∂aP

P

∇2
iP

P
+ 2

(

~∇iP

P

)2
∂aP

P
− 2

3
∑

µ=1

∂a∇µ
i P

P

∇µ
i P

P

So to evaluate the gradient of the local energy we need only toknow these vectors:

∂aP

P
,
∂a
~∇jP

P
,
∂a∇2

jP

P
(B.7)

B.2 Pairing determinant

Let us define the matrixAij as:

Aij = Φ(ri, rj) =
∑

l,m

λl,mφl(ri)φm(rj) (B.8)

wherei are coordinates of spin up electrons andj of spin down electrons. For

polarized system is possible extend the definition of the geminal wave-function.

This generalization was first proposed by Coleman (110). In practise ifN↑ > N↓

we can define aN↑xN↑ matrixAij in the following way:

Aij = Φ(r↑i , r
↓
j ) for j = 1, N↓ (B.9)

= φ̄j(r
↑
i ) for j = N↓ + 1, N↑ (B.10)
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When we move an electron to ratio between the old and the new determinant

will be given for a spin down electron:

|A(ri, r
′
k)| =

∑

i

Φ(ri, r
′
k) |A(ri, rk)|A−1

ik

|A(ri, r
′
k)|

|A(ri, rk)|
=

∑

i

Φ(ri, r
′
k)A

−1
ik

|A(ri, r
′
k)|

|A(ri, rk)|
=

∑

i

∑

l,m

λl,mφl(ri)φm(r′k)A
−1
ik (B.11)

and for spin up:

|A(r′i, rk)| =
∑

k

Φ(r′i, rk) |A(r′i, rk)|A−1
ik

|A(r′i, rk)|
|A(r′i, rk)|

=
∑

k

Φ(r′i, rk)A
−1
ik

For updating the inverse matrixA−1, used here, after a move we follow the simple

formula used for the Slater determinant(38) with indices that depend from the spin

of the electron.

Gradients and Laplacian

Using the formulaD.3 and the fact the only a column or a row may depends from

a given electronic coordinate we obtain:

∇2
i ln |A| =

∑

k

∇2
i Φ(ri, rk)A

−1
ik

~∇i ln |A| =
∑

k

~∇iΦ(ri, rk)A
−1
ik (B.12)

where:

∇2
i Φ(ri, rk) =

∑

l,m

λl,m∇2
iφl(ri)φm(rj) (B.13)

~∇iΦ(ri, rk) =
∑

l,m

λl,m
~∇iφl(ri)φm(rj) (B.14)

for spin down we have to exchangei with k in all these equations.
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The logarithmic derivatives

In pairing trial-function the variation of a parameter involves all terms of the ma-

trix and so usingD.3 the logarithmic derivatives will be:

∂ ln det(A)

∂β
=
∑

ij

∂ ln det(A)

∂aij

∂aij

∂β
=
∑

ij

∂Φ(ri, rj)

∂β
A−1

ij

If only the k-th orbital depends byβ we obtain:

∂Φ(ri, rj)

∂β
=
∂φk(ri)

∂β

∑

m

λkmφm(rj) +
∂φk(rj)

∂β

∑

m

λmkφm(ri) (B.15)

If β is one of theλ parameter the derivative will be:

∂Φ(ri, rj)

∂λab

= φa(ri)φb(rj) + φb(ri)φa(rj) (B.16)

becauseλ matrix is symmetric.

Second derivatives

In the general case in which all elements of the matrix dependfrom the parameters

β, γ the derivative is:

1

|A|
∂2 |A|
∂β∂γ

=
1

|A|
∑

n,k,j,m

∂ |A|
∂ank∂ajm

∂ank

∂β

∂ajm

∂γ
+

1

|A|
∑

nk

∂ |A|
∂ank

∂2ank

∂β∂γ
(B.17)

now using equationsD.3 andD.5

1

|A|
∑

n,k,j,m

∂ |A|
∂ank∂ajm

∂ajm

∂β

∂ank

∂γ
=

∑

n,k,j,m

(

A−1
knA

−1
mj − A−1

kmA
−1
nj

) ∂ank

∂β

∂ajm

∂γ

1

|A|
∑

nk

∂ |A|
∂ank

∂2ank

∂β∂γ
=

∑

nk

A−1
nk

∂2ank

∂β∂γ
(B.18)

where the derivatives∂ank/∂γ, ∂ank/∂β are given byB.15, B.16, B.14. The

second derivatives can be evaluate fromB.8.

If β andγ are twoλlm usingB.16the second derivative is obviously zero.
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If β andγ are both orbital parameters, and for example thek− th orbital depends

from β andl − th orbital fromγ, usingB.15we have:

∂2Φ(ri, rj)

∂β∂γ
= λkl

∂φk(ri)

∂β

∂φl(rj)

∂γ
+ λlk

∂φl(ri)

∂β

∂φk(rj)

∂γ
(B.19)

= λkl

(

∂φk(ri)

∂β

∂φl(rj)

∂γ
+
∂φl(ri)

∂β

∂φk(rj)

∂γ

)

(B.20)

(B.21)

becauseλkl = λlk.

If β andγ are parameters of the same orbital we have:

∂2Φ(ri, rj)

∂β2
=
∂2φk(ri)

∂β∂γ

∑

m

λkmφm(rj) +
∂2φk(rj)

∂β∂γ

∑

m

λmkφm(ri) (B.22)

If γ is one of theλ parameter, using the fact theλ matrix is symmetric we obtain:

∂2Φ(ri, rj)

∂β∂λab
=
∂φa(ri)

∂β
φb(rj) + φb(ri)

∂φa(rj)

∂β
(B.23)

Derivatives of the Local Energy

To evaluate the derivatives of the local energy we need to calculate the following

terms:
∂a
~∇i |A|
|A| ,

∂a∇2
i |A|

|A| (B.24)

we obtain:

∂a
~∇i |A|
|A| =

1

|A|
∑

n,l,m

∂ |A|
∂ani∂alm

~∇iΦ(rn, ri)∂aΦ(rl, rm) +
∑

n

1

|A|
∂ |A|
∂ain

∂a
~∇iΦ(ri, rn)

=
∑

n,l,m

(

A−1
in A

−1
ml −A−1

il A
−1
mn

)

~∇iΦ(rn, ri)∂aΦ(rl, rm) +
∑

n

A−
ni1∂a

~∇iΦ(ri, rn)

and a similar formula for the derivative of the laplacian. Ifonly the orbitalk

depends bya we have:

∂a
~∇iΦ(ri, rj) = ∂a

~∇iφk(ri)
∑

m

λkmφm(rj) + ∂aφk(rj)
∑

m

λmk
~∇iφm(ri)
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B.3 Three-body

In the same spirit of the pairing determinant we built a three-body factor as:

U = exp

(

Nelec
∑

i,j

u(~ri, ~rj)

)

(B.25)

u(~ri, ~rj) =

Norb
∑

m,n

λmnφm(ri)φn(rj) (B.26)

When you move an electronrk the ratio between the two three-body factor is given

by:

U(r′k)

U(rk)
= exp





∑

m,n





∑

(j 6=k)

λmnφm(rj) (φn(r′k) − φn(rk)) + φm(r′k)φn(r′k) − φm(rk)φn(rk)









(B.27)

and if you accept the move to update the value of three-body you have only to

updateNorb orbitals.

Gradients and Laplacian

The gradients and laplacian of the logarithm of three-body term are given by:

~∇k lnU =
∑

j

∑

m,n

λmn
~∇kφm(rk)φn(rj) (B.28)

∇2
k lnU =

∑

j

∑

m,n

λmn∇2
kφm(rk)φn(rj) (B.29)

Three-body Derivatives

The derivative respect to a parameterαm of an orbitalm is given by:

∂ lnU

∂αm

=
∑

i,j

∑

l

(

λlmφl(ri)
∂φm(rj)

∂αm

+ λml
∂φm(ri)

∂αm

φl(rj)

)

(B.30)

and the derivative respect toλab is

∂ lnU

∂λab
=
∑

i,j

φa(ri)φb(rj) + φb(ri)φa(rj) (B.31)

becauseλ matrix is symmetric.
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Derivatives of the local energy

It is very simple to evaluate the terms appearing inB.5 andB.6 in fact usingB.29

andB.28 and considering only them orbital dependent by the parametera we

obtain:

∂a
~∇k lnU =

∑

j

∑

n

λmn∂a
~∇kφm(rk)φn(rj) +

∑

j

∑

n

λnm
~∇kφn(rk)∂aφm(rj)

∂a∇2
k lnU =

∑

j

∑

n

λmn∂a∇2
kφm(rk)φn(rj) +

∑

j

∑

n

λnm∇2
kφn(rk)∂aφm(rj)
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Appendix C

Cusp conditions

When two Coulomb particles get close, the potential has1/r singularity. We want

modify the wave function in such a way to cancel this singularity. Let us consider

the case of an electron close to a nucleus, the Schrödinger equation reduces to:
[

− 1

2L2
∇2

e −
Ze2

rL

]

ψ = Eψ (C.1)

whereZ is the nuclear charge, notice that we used rescaled distances (see Eq.

4.23). Writing the first term in spherical coordinates, we get

− 1

2

ψ′′

L2
− 1

rL

(

Ze2ψ +
ψ′

L

)

= Eψ (C.2)

To cancel the singularity at smallr the term multiplying by1/r must vanish. So

we have
1

ψ
ψ′ = −ZLe2 (C.3)

If ψ = e−cr we must havec = ZLe2. For the case of two electrons, when they are

close each other the Schrödinger equation, using relativecoordinatesr12 = r1−r2,
reduces to

[

−∇2
12

L2
+

e2

Lr12

]

ψ = Eψ (C.4)

Electrons with unlike spins have an extra factor of1/2 in the cusp condition com-

pared with the electron-nucleus case. So we havec = −e2L/2. In the antisym-

metric case, the electrons will be in a relativep state, reducing the cusp condition

by 1/2, soc = −e2L/4. Since the antisymmetry requirement keeps them apart
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anyway having the correct cusp for like spin electrons leadsto a very little in the

energy or the variance(see Ref. (39).



Appendix D

Determinant derivatives

Consider a matrixA, we want find a simple way to express derivatives of the its

determinant respect to the matrix elementsaij. The determinant can be expanded

in the elementsaij :

detA = |A| =
∑

j

aij(−1)i+jCji (D.1)

whereCij is the minor of the matrixA respect to the elementaij and therefore

does not depend explicitly by the elements of the rawith. So the derivative with

respect toakj will be:
∂ |A|
∂akj

= (−1)k+jCkl (D.2)

and for the logarithmic derivative we have:

∂ ln |A|
∂akj

= (−1)k+jCkl
1

|A| = A−1
kj (D.3)

We want to find a simple relation to evaluate second derivatives of the determinant.

We write the relation
∑

j

aijA
−1
jk =

∑

j

aij
1

|A|
∂ |A|
∂akj

= δik (D.4)

if we derive this equation foraln we obtain:

∂

∂aln

(

∑

j

akjA
−1
ji

)

=
∑

j

akj

( −1

|A|2
∂ |A|
∂aij

∂ |A|
∂aln

+
1

|A|
∂2 |A|
∂aij∂aln

)

+ δlkδnj
1

A

∂ |A|
∂aji

=
∑

j

akj

( −1

|A|2
∂ |A|
∂aij

∂ |A|
∂aln

+
1

|A|
∂2 |A|
∂aij∂aln

+
1

|A|2
∂ |A|
∂alj

∂ |A|
∂ani

)
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where we substitute theδlk with the eq.D.4. Because of this equation is zero for

all ak this means that the expression in parentheses is zero, and this yields to:

1

|A|
∂2 |A|

∂akn∂ajm
= A−1

nkA
−1
mj − A−1

mkA
−1
nj (D.5)



Appendix E

Error Analysis due to finite time

step in the GLE integration in a

simple case

When we discretize the equation5.13we introduce an error due to the finite in-

tegration time stepτ . Following the idea of Ref. (111) we can evaluate this error

analytically in the case of a simple harmonic oscillator. Consider the equation:

xn+1 − (1 + e−λτ )xn + e−λτxn−1 =
τ

λ
(1 − e−λτ )(ω2xn + rn). (E.1)

We are interested in a statistically stationary process andso we proceed to evaluate

mean average energies and correlation functions as function of τ . To do so we

multiply the equationE.1for xn andxn−1 , respectively, and then take the average.

We obtain the following pair of equations:

〈xn+1xn〉 +

[

τω2

λ
(e−λτ − 1) − (1 + e−λτ )

]

〈xnxn〉 + e−λτ 〈xn−1xn〉 = 0

〈xn+1xn−1〉 − (1 + e−λτ )〈xnxn−1〉 +

[

τω2

λ
(e−λτ − 1) + e−λτ

]

〈xn−1xn−1〉 = 0

Becuase we are interested in the equilibrium distribution,we can assume that

〈xnxn−1〉 = 〈xn+1xn〉 and〈xn+1xn+1〉 = 〈xnxn〉 = 〈xn−1xn−1〉. Thus we have

three unknown quantities〈xn+1xn〉,〈xnxn〉 and〈xn+1xn−1〉. To get a third relation
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among this quantities we square the Eq.E.1to obtain the relation:

2

[

τω2

λ
(e−λτ − 1) − (1 + e−λτ )

]

(

1 + e−λτ
)

〈xn+1xn〉

+

[

1 + e−2λτ +

(

τω2

λ
(1 − e−λτ ) + (1 + e−λτ )

)2
]

〈xnxn〉

+ 2e−λτ 〈xn+1xn−1〉 =
τ 2

λ2
(1 − e−λτ )2〈rnrn〉

After solving this equation system we can evaluate the potential and the kinetic

energy:

〈Epot〉 =
1

2
ω2〈xnxn〉 (E.2)

〈Ekin〉 =
1

2
〈V nV n〉 =

1

2

〈(xn − xn−1)2〉
τ 2

(E.3)

=
1

τ 2

[

〈xnxn〉 − 〈xnxn−1〉
]

(E.4)

It is easy to show that in the limit of smallτ the potential and the kinetic energies

converge to:

〈Ekin〉 =
1

2
kbT

(

1 +
1

4
ω2τ 2 +O(τ 4)

)

(E.5)

〈Epot〉 =
1

2
kbT

(

1 +O(τ 2) +O(τ 3)
)

(E.6)

This show that at least in this simple model the impulse integrator leads to a

quadratic error inτ in both kinetic and poterntial energy.
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