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produced by a single field (both of the same amplitude, say), because the total
light intensity is larger in the former case.

In general, the summation over field frequencies (
∑

(nm)) in Eq. (1.3.12)
can be performed formally to obtain the result

Pi(ωn + ωm) = ǫ0D
∑

jk

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm),

(1.3.19)

where D is known as the degeneracy factor and is equal to the number of
distinct permutations of the applied field frequencies ωn and ωm.

The expression (1.3.12) defining the second-order susceptibility can readily
be generalized to higher-order interactions. In particular, the components of
the third-order susceptibility are defined as the coefficients relating the ampli-
tudes according to the expression

Pi(ωo + ωn + ωm) = ǫ0

∑

jkl

∑

(mno)

χ
(3)
ijkl(ω0 + ωn + ωm,ωo,ωn,ωm)

×Ej (ωo)Ek(ωn)El(ωm). (1.3.20)

We can again perform the summation over m, n, and o to obtain the result

Pi(ωo + ωn + ωm) = ǫ0D
∑

jkl

χ
(3)
ijkl(ω0 + ωn + ωm,ωo,ωn,ωm)

× Ej (ω0)Ek(ωn)El(ωm), (1.3.21)

where the degeneracy factor D represents the number of distinct permutations
of the frequencies ωm, ωn, and ωo.

1.4. Nonlinear Susceptibility of a Classical Anharmonic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator,
is known to provide a very good description of the linear optical properties of
atomic vapors and of nonmetallic solids. In the present section, we extend the
Lorentz model by allowing the possibility of a nonlinearity in the restoring
force exerted on the electron. The details of the analysis differ depending
upon whether or not the medium possesses inversion symmetry.∗ We first treat
the case of a noncentrosymmetric medium, and we find that such a medium

∗ The role of symmetry in determining the nature of the nonlinear susceptibilty is discussed from a
more fundamental point of view in Section 1.5. See especially the treatment leading from Eq. (1.5.31)
to (1.5.35).
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can give rise to a second-order optical nonlinearity. We then treat the case of
a medium that possesses a center of symmetry and find that the lowest-order
nonlinearity that can occur in this case is a third-order nonlinear susceptibility.
Our treatment is similar to that of Owyoung (1971).

The primary shortcoming of the classical model of optical nonlinearities
presented here is that this model ascribes a single resonance frequency (ω0)

to each atom. In contrast, the quantum-mechanical theory of the nonlinear
optical susceptibility, to be developed in Chapter 3, allows each atom to pos-
sess many energy eigenvalues and hence more than one resonance frequency.
Since the present model allows for only one resonance frequency, it cannot
properly describe the complete resonance nature of the nonlinear susceptibil-
ity (such as, for example, the possibility of simultaneous one- and two-photon
resonances). However, it provides a good description for those cases in which
all of the optical frequencies are considerably smaller than the lowest elec-
tronic resonance frequency of the material system.

1.4.1. Noncentrosymmetric Media

For the case of noncentrosymmetric media, we take the equation of motion of
the electron position x̃ to be of the form

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −eẼ(t)/m. (1.4.1)

In this equation we have assumed that the applied electric field is given by
Ẽ(t), that the charge of the electron is −e, that there is a damping force of the
form∗ −2mγ ˙̃x, and that the restoring force is given by

F̃restoring = −mω2
0x̃ − max̃2, (1.4.2)

where a is a parameter that characterizes the strength of the nonlinearity. We
obtain this form by assuming that the restoring force is a nonlinear function
of the displacement of the electron from its equilibrium position and retaining
the linear and quadratic terms in the Taylor series expansion of the restoring
force in the displacement x̃. We can understand the nature of this form of the
restoring force by noting that it corresponds to a potential energy function of
the form

U(x̃) = −

∫

F̃restoring dx̃ =
1

2
mω2

0x̃
2 +

1

3
max̃3. (1.4.3)

∗ The factor of two is introduced to make γ the dipole damping rate. 2γ is therefore the full width
at half maximum in angular frequency units of the atomic absorption profile in the limit of linear
response.
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FIGURE 1.4.1 Potential energy function for a noncentrosymmetric medium.

Here the first term corresponds to a harmonic potential and the second term
corresponds to an anharmonic correction term, as illustrated in Fig. 1.4.1.
This model corresponds to the physical situation of electrons in real mate-
rials, because the actual potential well that the atomic electron feels is not
perfectly parabolic. The present model can describe only noncentrosymmet-
ric media because we have assumed that the potential energy function U(x̃)

of Eq. (1.4.3) contains both even and odd powers of x̃; for a centrosymmetric
medium only even powers of x̃ could appear, because the potential function
U(x̃) must possess the symmetry U(x̃) = U(−x̃). For simplicity, we have
written Eq. (1.4.1) in the scalar-field approximation; note that we cannot treat
the tensor nature of the nonlinear susceptibility without making explicit as-
sumptions regarding the symmetry properties of the material.

We assume that the applied optical field is of the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.4.4)

No general solution to Eq. (1.4.1) for an applied field of the form (1.4.4) is
known. However, if the applied field is sufficiently weak, the nonlinear term
ax̃2 will be much smaller than the linear term ω2

0x̃ for any displacement x̃

that can be induced by the field. Under this circumstance, Eq. (1.4.1) can be
solved by means of a perturbation expansion. We use a procedure analogous
to that of Rayleigh–Schrödinger perturbation theory in quantum mechanics.
We replace Ẽ(t) in Eq. (1.4.1) by λẼ(t), where λ is a parameter that ranges
continuously between zero and one and that will be set equal to one at the end
of the calculation. The expansion parameter λ thus characterizes the strength
of the perturbation. Equation (1.4.1) then becomes

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −λeẼ(t)/m. (1.4.5)
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We now seek a solution to Eq. (1.4.5) in the form of a power series expan-
sion in the strength λ of the perturbation, that is, a solution of the form

x̃ = λx̃(1) + λ2x̃(2) + λ3x̃(3) + · · · . (1.4.6)

In order for Eq. (1.4.6) to be a solution to Eq. (1.4.5) for any value of the
coupling strength λ, we require that the terms in Eq. (1.4.5) proportional to λ,
λ2, λ3, etc., each satisfy the equation separately. We find that these terms lead
respectively to the equations

¨̃x
(1)

+ 2γ ˙̃x
(1)

+ ω2
0x̃

(1) = −eẼ(t)/m, (1.4.7a)

¨̃x
(2)

+ 2γ ˙̃x
(2)

+ ω2
0x̃

(2) + a
[

x̃(1)
]2

= 0, (1.4.7b)

¨̃x
(3)

+ 2γ ˙̃x
(3)

+ ω2
0x̃

(3) + 2ax̃(1)x̃(2) = 0, etc. (1.4.7c)

We see from Eq. (1.4.7a) that the lowest-order contribution x̃(1) is governed
by the same equation as that of the conventional (i.e., linear) Lorentz model.
Its steady-state solution is thus given by

x̃(1)(t) = x(1)(ω1)e
−iω1t + x(1)(ω2)e

−iω2t + c.c., (1.4.8)

where the amplitudes x(1)(ωj ) have the form

x(1)(ωj ) = −
e

m

Ej

D(ωj )
, (1.4.9)

where we have introduced the complex denominator function

D(ωj ) = ω2
0 − ω2

j − 2iωjγ. (1.4.10)

This expression for x̃(1)(t) is now squared and substituted into Eq. (1.4.7b),
which is solved to obtain the lowest-order correction term x̃(2). The square
of x̃(1)(t) contains the frequencies ±2ω1, ±2ω2, ±(ω1 + ω2), ±(ω1 − ω2),
and 0. To determine the response at frequency 2ω1, for instance, we must
solve the equation

¨̃x
(2)

+ 2γ ˙̃x
(2)

+ ω2
0x̃

(2) =
−a(eE1/m)2e−2iω1t

D2(ω1)
. (1.4.11)

We seek a steady-state solution of the form

x̃(2)(t) = x(2)(2ω1)e
−2iω1t . (1.4.12)

Substitution of Eq. (1.4.12) into Eq. (1.4.11) leads to the result

x(2)(2ω1) =
−a(e/m)2E2

1

D(2ω1)D2(ω1)
, (1.4.13)
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where we have made use of the definition (1.4.10) of the function D(ωj ).
Analogously, the amplitudes of the responses at the other frequencies are
found to be

x(2)(2ω2) =
−a(e/m)2E2

2

D(2ω2)D2(ω2)
, (1.4.14a)

x(2)(ω1 + ω2) =
−2a(e/m)2E1E2

D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.14b)

x(2)(ω1 − ω2) =
−2a(e/m)2E1E

∗
2

D(ω1 − ω2)D(ω1)D(−ω2)
, (1.4.14c)

x(2)(0) =
−2a(e/m)2E1E

∗
1

D(0)D(ω1)D(−ω1)
+

−2a(e/m)2E2E
∗
2

D(0)D(ω2)D(−ω2)
.

(1.4.14d)

We next express these results in terms of the linear (χ (1)) and nonlinear
(χ (2)) susceptibilities. The linear susceptibility is defined through the relation

P (1)(ωj ) = ǫ0χ
(1)(ωj )E(ωj ). (1.4.15)

Since the linear contribution to the polarization is given by

P (1)(ωj ) = −Nex(1)(ωj ), (1.4.16)

where N is the number density of atoms, we find using Eqs. (1.4.8) and (1.4.9)
that the linear susceptibility is given by

χ (1)(ωj ) =
N(e2/m)

ǫ0D(ωj )
. (1.4.17)

The nonlinear susceptibilities are calculated in an analogous manner. The
nonlinear susceptibility describing second-harmonic generation is defined by
the relation

P (2)(2ω1) = ǫ0χ
(2)(2ω1,ω1,ω1)E(ω1)

2, (1.4.18)

where P (2)(2ω1) is the amplitude of the component of the nonlinear polariza-
tion oscillating at frequency 2ω1 and is defined by the relation

P (2)(2ω1) = −Nex(2)(2ωi). (1.4.19)

Comparison of these equations with Eq. (1.4.13) gives

χ (2)(2ω1,ω1,ω1) =
N(e3/m2)a

ǫ0D(2ω1)D2(ω1)
. (1.4.20)
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Through use of Eq. (1.4.17), this result can be written instead in terms of the
product of linear susceptibilities as

χ (2)(2ω1,ω1,ω1) =
ǫ2

0ma

N2e3
χ (1)(2ω1)

[

χ (1)(ω1)
]2

. (1.4.21)

The nonlinear susceptibility for second-harmonic generation of the ω2 field
is obtained trivially from Eqs. (1.4.20) and (1.4.21) through the substitution
ω1 → ω2.

The nonlinear susceptibility describing sum-frequency generation is ob-
tained from the relations

P (2)(ω1 + ω2) = 2ǫ0χ
(2)(ω1 + ω2,ω1,ω2)E(ω1)E(ω2) (1.4.22)

and

P (2)(ω1 + ω2) = −Nex(2)(ω1 + ω2). (1.4.23)

Note that in this case the relation defining the nonlinear susceptibility con-
tains a factor of two because the two input fields are distinct, as discussed in
relation to Eq. (1.3.19). By comparison of these equations with (1.4.14b), the
nonlinear susceptibility is seen to be given by

χ (2)(ω1 + ω2,ω1,ω2) =
N(e3/m2)a

ǫ0D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.24)

which can be expressed in terms of the product of linear susceptibilities as

χ (2)(ω1 + ω2,ω1,ω2) =
ǫ2

0ma

N2e3
χ (1)(ω1 + ω2)χ

(1)(ω1)χ
(1)(ω2). (1.4.25)

It can be seen by comparison of Eqs. (1.4.20) and (1.4.24) that, as ω2 ap-
proaches ω1, χ (2)(ω1 + ω2,ω1,ω2) approaches χ (2)(2ω1,ω1,ω1).

The nonlinear susceptibilities describing the other second-order processes
are obtained in an analogous manner. For difference-frequency generation we
find that

χ (2)(ω1 − ω2,ω1,−ω2) =
N(e3/ǫ0m

2)a

D(ω1 − ω2)D(ω1)D(−ω2)

=
ǫ2

0ma

N2e3
χ (1)(ω1 − ω2)χ

(1)(ω1)χ
(1)(−ω2),

(1.4.26)
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and for optical rectification we find that

χ (2)(0,ω1,−ω1) =
N(e3/m2)a

ǫ0D(0)D(ω1)D(−ω1)

=
ǫ2

0ma

N2e3
χ (1)(0)χ (1)(ω1)χ

(1)(−ω1). (1.4.27)

The analysis just presented shows that the lowest-order nonlinear contri-
bution to the polarization of a noncentrosymmetric material is second order
in the applied field strength. This analysis can readily be extended to include
higher-order effects. The solution to Eq. (1.4.7c), for example, leads to a third-
order or χ (3) susceptibility, and more generally terms proportional to λn in the
expansion described by Eq. (1.4.6) lead to a χ (n) susceptibility.

1.4.2. Miller’s Rule

An empirical rule due to Miller (Miller, 1964; see also Garrett and Robinson,
1966) can be understood in terms of the calculation just presented. Miller
noted that the quantity

χ (2)(ω1 + ω2, ω1, ω2)

χ (1)(ω1 + ω2)χ (1)(ω1)χ (1)(ω2)
(1.4.28)

is nearly constant for all noncentrosymmetric crystals. By comparison with
Eq. (1.4.25), we see this quantity will be constant only if the combination

maǫ2
0

N2e3
(1.4.29)

is nearly constant. In fact, the atomic number density N is nearly the same
(∼1022 cm−3) for all condensed matter, and the parameters m and e are fun-
damental constants. We can estimate the size of the nonlinear coefficient a by
noting that the linear and nonlinear contributions to the restoring force given
by Eq. (1.4.2) would be expected to become comparable when the displace-
ment x̃ of the electron from its equilibrium position is approximately equal to
the size of the atom. This distance is of the order of the separation between
atoms—that is, of the lattice constant d . This reasoning leads to the order-of-
magnitude estimate that mω2

0d = mad2 or that

a =
ω2

0

d
. (1.4.30)

Since ω0 and d are roughly the same for most solids, the quantity a would
also be expected to be roughly the same for all materials where it does not
vanish by reasons of symmetry.



28 1 ♦ The Nonlinear Optical Susceptibility

We can also make use of the estimate of the nonlinear coefficient a given
by Eq. (1.4.30) to estimate of the size of the second-order susceptibility under
highly nonresonant conditions. If we replace D(ω) by ω2

0 in the denominator
of Eq. (1.4.24), set N equal to 1/d3, and set a equal to ω2

0/d , we find that χ (2)

is given approximately by

χ (2) =
e3

ǫ0m2ω4
0d

4
. (1.4.31)

Using the values ω0 = 1 × 1016 rad/s, d = 3 Å, e = 1.6 × 10−19 C, and
m = 9.1 × 10−31 kg, we find that

χ (2) ≃ 6.9 × 10−12 m/V, (1.4.32)

which is in good agreement with the measured values presented in Table 1.5.3
(see p. 50).

1.4.3. Centrosymmetric Media

For the case of a centrosymmetric medium, we assume that the electronic
restoring force is given not by Eq. (1.4.2) but rather by

F̃restoring = −mω2
0x̃ + mbx̃3, (1.4.33)

where b is a parameter that characterizes the strength of the nonlinearity. This
restoring force corresponds to the potential energy function

U(x̃) = −

∫

F̃restoringdx̃ =
1

2
mω2

0x̃
2 −

1

4
mbx̃4. (1.4.34)

This potential function is illustrated in the Fig. 1.4.2 (for the usual case in
which b is positive) and is seen to be symmetric under the operation x̃ → −x̃,
which it must be for a medium that possesses a center of inversion symmetry.
Note that −mbx̃4/4 is simply the lowest-order correction term to the parabolic
potential well described by the term 1

2mω2
0x̃

2. We assume that the electronic
displacement x̃ never becomes so large that it is necessary to include higher-
order terms in the potential function.

We shall see below that the lowest-order nonlinear response resulting from
the restoring force of Eq. (1.4.33) is a third-order contribution to the polar-
ization, which can be described by a χ (3) susceptibility. As in the case of
non-centrosymmetric media, the tensor properties of this susceptibility can-
not be specified unless the internal symmetries of the medium are completely
known. One of the most important cases is that of a material that is isotropic
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FIGURE 1.4.2 Potential energy function for a centrosymmetric medium.

(as well as being centrosymmetric). Examples of such materials are glasses
and liquids. In such a case, we can take the restoring force to have the form

F̃restoring = −mω2
0 r̃ + mb(r̃ · r̃)r̃. (1.4.35)

The second contribution to the restoring force must have the form shown be-
cause it is the only form that is third-order in the displacement r̃ and is di-
rected in the r̃ direction, which is the only possible direction for an isotropic
medium.

The equation of motion for the electron displacement from equilibrium is
thus

¨̃r + 2γ ˙̃r + ω2
0 r̃ − b(r̃ · r̃)r̃ = −eẼ(t)/m. (1.4.36)

We assume that the applied field is given by

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c.; (1.4.37)

we allow the field to have three distinct frequency components because this is
the most general possibility for a third-order interaction. However, the algebra
becomes very tedious if all three terms are written explicitly, and hence we
express the applied field as

Ẽ(t) =
∑

n

E(ωn)e
−iωnt . (1.4.38)

The method of solution is analogous to that used above for a noncentrosym-
metric medium. We replace Ẽ(t) in Eq. (1.4.36) by λẼ(t), where λ is a pa-
rameter that characterizes the strength of the perturbation and that is set equal
to unity at the end of the calculation. We seek a solution to Eq. (1.4.36) having
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the form of a power series in the parameter λ:

r̃(t) = λr̃
(1)(t) + λ2

r̃
(2)(t) + λ3

r̃
(3)(t) + · · · . (1.4.39)

We insert Eq. (1.4.39) into Eq. (1.4.36) and require that the terms proportional
to λn vanish separately for each value of n. We thereby find that

¨̃r(1) + 2γ ˙̃r(1) + ω2
0 r̃

(1) = −eẼ(t)/m, (1.4.40a)

¨̃r(2) + 2γ ˙̃r(2) + ω2
0 r̃

(2) = 0, (1.4.40b)

¨̃r(3) + 2γ ˙̃r(3) + ω2
0 r̃

(3) − b
(

r̃
(1) · r̃

(1)
)

r̃
(1) = 0 (1.4.40c)

for n = 1, 2, and 3, respectively. Equation (1.4.40a) is simply the vector ver-
sion of Eq. (1.4.7a), encountered above. Its steady-state solution is

r̃
(1)(t) =

∑

n

r
(1)(ωn)e

−iωnt , (1.4.41a)

where

r
(1)(ωn) =

−eE(ωn)/m

D(ωn)
(1.4.41b)

with D(ωn) given as above by D(ωn) = ω2
0 − ω2

n − 2iωnγ . Since the polar-
ization at frequency ωn is given by

P
(1)(ωn) = −Ner

(1)(ωn), (1.4.42)

we can describe the Cartesian components of the polarization through the
relation

P
(1)
i (ωn) = ǫ0

∑

j

χ
(1)
ij (ωn)Ej (ωn). (1.4.43a)

Here the linear susceptibility is given by

χ
(1)
ij (ωn) = χ (1)(ωn)δij (1.4.43b)

with χ (1)(ωn) given as in Eq. (1.4.17) by

χ (1)(ωn) =
Ne2/m

ǫ0D(ωn)
(1.4.43c)

and where δij is the Kronecker delta, which is defined such that δij = 1 for
i = j and δij = 0 for i 
= j .

The second-order response of the system is described by Eq. (1.4.40b).
Since this equation is damped but not driven, its steady-state solution
vanishes, that is,

r̃
(2) = 0. (1.4.44)
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To calculate the third-order response, we substitute the expression for
r̃
(1)(t) given by Eq. (1.4.41a) into Eq. (1.4.40c), which becomes

¨̃r(3) + 2γ ˙̃r(3) + ω2
0 r̃

(3) = −
∑

mnp

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)

× e−i(ωm+ωn+ωp)t . (1.4.45)

Because of the summation over m, n, and p, the right-hand side of this equa-
tion contains many different frequencies. We denote one of these frequencies
by ωq = ωm + ωn + ωp . The solution to Eq. (1.4.45) can then be written in
the form

r̃
(3)(t) =

∑

q

r
(3)(ωq)e−iωq t . (1.4.46)

We substitute Eq. (1.4.46) into Eq. (1.4.45) and find that r
(3)(ωq) is given by

(

−ω2
q − iωq2γ + ω2

0

)

r
(3)(ωq) = −

∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)
,

(1.4.47)

where the summation is to be carried out over frequencies ωm, ωn, and ωp

with the restriction that ωm +ωn +ωp must equal ωq . Since the coefficient of
r
(3)(ωq) on the left-hand side is just D(ωq), we obtain

r
(3)(ωq) = −

∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.48)

The amplitude of the polarization component oscillating at frequency ωq then
is given in terms of this amplitude by

P
(3)(ωq) = −Ner

(3)(ωq). (1.4.49)

We next recall the definition of the third-order nonlinear susceptibility
Eq. (1.3.20),

P
(3)
i (ωq) = ǫ0

∑

jkl

∑

(mnp)

χ
(3)
ijkl(ωq,ωm,ωn,ωp)Ej (ωm)Ek(ωn)El(ωp).

(1.4.50)

Since this equation contains a summation over the dummy variables m, n,
and p, there is more than one possible choice for the expression for the nonlin-
ear susceptibility. An obvious choice for this expression for the susceptibility,
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based on the way in which Eqs. (1.4.48) and (1.4.49) are written, is

χ
(3)
ijkl(ωq,ωm,ωn,ωp) =

Nbe4δjkδil

ǫ0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.51)

While Eq. (1.4.51) is a perfectly adequate expression for the nonlinear sus-
ceptibility, it does not explicitly show the full symmetry of the interaction
in terms of the arbitrariness of which field we call Ej (ωm), which we call
Ek(ωn), and which we call El(ωp). It is conventional to define nonlinear
susceptibilities in a manner that displays this symmetry, which is known as
intrinsic permutation symmetry. Since there are six possible permutations of
the orders in which Ej (ωm), Ek(ωn), and El(ωp) may be taken, we define
the third-order susceptibility to be one-sixth of the sum of the six expressions
analogous to Eq. (1.4.51) with the input fields taken in all possible orders.
When we carry out this prescription, we find that only three distinct contribu-
tions occur and that the resulting form for the nonlinear susceptibility is given
by

χ
(3)
ijkl(ωq ,ωm,ωn,ωp) =

Nbe4[δij δkl + δikδj l + δilδjk]

3ǫ0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.52)

This expression can be rewritten in terms of the linear susceptibilities at the
four different frequencies ωq ,ωm,ωn, and ωp by using Eq. (1.4.43c) to elim-
inate the resonance denominator factors D(ω). We thereby obtain

χ
(3)
ijkl(ωq ,ωm,ωn,ωp) =

bmǫ3
0

3N3e4

[

χ (1)(ωq)χ (1)(ωm)χ (1)(ωn)χ
(1)(ωp)

]

× [δij δkl + δikδj l + δilδjk]. (1.4.53)

We can estimate the value of the phenomenological constant b that appears
in this result by means of an argument analogous to that used above (see
Eq. (1.4.30)) to estimate the value of the constant a that appears in the ex-
pression for χ (2). We assume that the linear and nonlinear contributions to the
restoring force given by Eq. (1.4.33) will become comparable in magnitude
when the displacement x̃ becomes comparable to the atomic dimension d , that
is, when mω2

0d = mbd3, which implies that

b =
ω2

0

d2
. (1.4.54)

Using this expression for b, we can now estimate the value of the nonlinear
susceptibility. For the case of nonresonant excitation, D(ω) is approximately
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equal to ω2
0 , and hence from Eq. (1.4.52) we obtain

χ (3) ≃
Nbe4

ǫ0m3ω8
0

=
e4

ǫ0m3ω6
0d

5
. (1.4.55)

Taking d = 3 Å and ω0 = 7 × 1015 rad/sec, we obtain

χ (3) ≃ 344 pm2/V2 (1.4.56)

We shall see in Chapter 4 that this value is typical of the nonlinear suscepti-
bility of many materials.

1.5. Properties of the Nonlinear Susceptibility

In this section we study some of the formal symmetry properties of the non-
linear susceptibility. Let us first see why it is important that we understand
these symmetry properties. We consider the mutual interaction of three waves
of frequencies ω1, ω2, and ω3 = ω1 + ω2, as illustrated in Fig. 1.5.1. A com-
plete description of the interaction of these waves requires that we know the
nonlinear polarizations P(ωi) influencing each of them. Since these quantities
are given in general (see also Eq. (1.3.12)) by the expression

Pi(ωn + ωm) = ǫ0

∑

jk

∑

(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm), (1.5.1)

we therefore need to determine the six tensors

χ
(2)
ijk (ω1,ω3,−ω2), χ

(2)
ijk (ω1,−ω2,ω3), χ

(2)
ijk (ω2,ω3,−ω1),

χ
(2)
ijk (ω2,−ω1,ω3), χ

(2)
ijk (ω3,ω1,ω2), and χ

(2)
ijk (ω3,ω2,ω1)

and six additional tensors in which each frequency is replaced by its negative.
In these expressions, the indices i, j , and k can independently take on the
values x, y, and z. Since each of these 12 tensors thus consists of 27 Cartesian
components, as many as 324 different (complex) numbers need to be specified
in order to describe the interaction.

FIGURE 1.5.1 Optical waves of frequencies ω1, ω2, and ω3 = ω1 + ω2 interact in a
lossless second-order nonlinear optical medium.


