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Many-body Green’s function perturbation theories,
such as the GW and Bethe–Salpeter formalisms, are
starting to be routinely applied to study charged
and neutral electronic excitations in molecular organic
systems relevant to applications in photovoltaics,
photochemistry or biology. In parallel, density func-
tional theory and its time-dependent extensions
significantly progressed along the line of range-
separated hybrid functionals within the generalized
Kohn–Sham formalism designed to provide correct
excitation energies. We give an overview and
compare these approaches with examples drawn
from the study of gas phase organic systems
such as fullerenes, porphyrins, bacteriochlorophylls
or nucleobases molecules. The perspectives and
challenges that many-body perturbation theory is
facing, such as the role of self-consistency, the
calculation of forces and potential energy surfaces in
the excited states, or the development of embedding
techniques specific to the GW and Bethe–Salpeter
equation formalisms, are outlined.

1. Introduction
Central to a large variety of fields and applications,
such as photovoltaics [1], printed ‘flexible’ electronics [2]
and light-emitting diodes [3,4], photochemistry [5] or
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photosynthesis [6], the study of the electronic and optical properties of organic systems are
crucial issues that stand as a challenge to both theory and experiment. The typical timescale
associated with electronic excitation processes and the localization of the optical excitations
on a few molecules in an usually disordered environment (solvant, donor–acceptor interface,
etc.) are challenging difficulties even for modern experimental characterization tools, despite
the tremendous progresses in, e.g. pump-probe time-resolved optical experiments. As a result,
important questions such as the nature of the transport mechanisms of free carriers in organic
systems (‘band’-like versus polaronic) [7] and the mechanisms of dissociation of the strongly
bound photoexcited electron–hole pairs (excitons) in organic photovoltaic cells1 remain very
controversial.

In such situations, which require information at the nanoscale, parameter-free (ab initio)
simulations may stand as a valuable tool to guide the interpretation of experiments. Further, the
idea that in silico computer simulations may guide experiments in designing novel molecules to
improve, e.g. organic solar cell efficiency, namely computer-aided screening of novel systems,
is an appealing direction that requires, however, to find a theoretical framework computationally
manageable and showing ‘sufficient’ accuracy to be reliable. First-principles simulations may also
be valuable to set up parametrized Hamiltonians capable of tackling the complexity of systems
where several competing mechanisms are involved. Indeed, the various energy scales associated
with (i) the inter-molecular hopping terms that govern the dispersion of the ‘bands’ in organic
crystals, (ii) the strength of the electron–vibration interactions that distinguishes adiabatic versus
vertical absorption and limits the mobility of carriers, or (iii) the effect of disorder on both ‘onsite’
and ‘offsite’ energy terms are very similar in organic crystals, so that establishing a hierarchy
between the related phenomena in order to set up a perturbative treatment may prove difficult.

In this review, we present and compare mean-field approaches, such as density functional
theory (DFT), Hartree–Fock and their hybrids, together with their time-dependent extensions,
to quasi-particle Green’s function approaches such as the GW formalism, aiming at predicting
accurate electronic energy levels (ionization energy, electronic affinity, ‘band’ gaps, etc.) and the
Bethe–Salpeter formalism designed to provide accurate optical (neutral) excitations. Concerning
density functional theory, we focus more specifically on the electronic excitation properties as
provided by the Kohn–Sham (KS) formalism. We will not be concerned in particular with ground
state properties (cohesive energies, geometry, etc.). Even though frontier orbital energies in finite
size systems can, in principle, be calculated by differences of ground state total energies between
the neutral and charged systems (the so-called �SCF technique), such an approach does not
apply to extended systems and does not allow to obtain the entire excitation spectrum and
related eigenstates.

We illustrate our comparisons between DFT/time-dependent density functional theory
(TDDFT) and GW/BSE on the basis of calculations performed on gas phase molecules, including
fullerenes, acenes, porphyrins, chlorophylls and nucleobases. In the case of optical properties,
much emphasis will be given to charge-transfer (CT) excitations, where the photoexcited electron
is displaced from one site to another, within one molecule or between separated molecules. These
special excitations are crucial to photovoltaic, photosynthetic or photocatalytic processes, but
stand as a central limitation to standard TDDFT.

2. Electronic properties: generalizedDFT–Hartree–FockKohn–Shamformalisms
versus GW calculations

The quasi-particle formalism, namely the mapping of the true many-body problem onto a
single (quasi-)particle framework, allows to draw fruitful correspondence between the KS
approach within DFT, the Hartree–Fock Roothan’s equation, and the self-energy formulation
of the exchange and correlation contribution to the single-particle eigenvalue problem within

1See for example the Correspondence section of Nature Mater. 12 (2013) 593–595 and the controversy about the role of ‘hot’
versus ‘cold’ CT excitons in the dissociation mechanism(s) of photogenerated bound Frenkel excitations.
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many-body perturbation theory (MBPT). In all cases, one attempts to solve a one-body
eigenvalue problem:(

−∇2

2
+ Vionic(r) + VHartree(r)

)
φ(r) +

∫
dr′Σ(r, r′; ε)φ(r′) = εφ(r), (2.1)

where we introduce a general Σ(r, r′; E) self-energy operator for the exchange and correlation
contribution. The self-energy operator can be shown to be, in general, non-local, energy-
dependent and non-Hermitian, so that the corresponding eigenstates present an imaginary part
interpreted as the lifetime of the quasi-particles with respect to electron–electron scattering.

(a) Generalized DFT–Hartree–Fock Kohn–Sham formalisms
In the standard KS framework with semilocal exchange-correlation functionals, Σ becomes the
adiabatic (energy-independent) and local VXC([n]; r) exchange-correlation potential, a functional
of the charge density [n]. Within Hartree–Fock, the non-locality is recovered, thanks to the true
exchange Fock operator with explicit summation over the Hartree–Fock self-consistent occupied
eigenstates: ΣHF(r, r′) = −ρHF(r, r′)v(r, r′), where v(r, r′) is the bare Coulomb potential and
ρHF(r, r′) = −∑occp

j φHF(r)φHF(r′)∗ the one-particle density matrix, but the energy-dependence
is absent, as a signature of the instantaneous character of the exchange process. Energy-
electron loss spectroscopy, namely the loss of energy of an electron going through a piece of
matter with various impinging kinetic energy, clearly reveals that the effective interaction of an
electron with its surrounding should depend on its energy.

It is now well documented that the KS band gap of semiconductors or insulators is significantly
underestimated when using standard semilocal functionals, such as the popular local density
approximation (LDA) [8–10] or the 1996 Perdew, Becke and Ernzerhof generalized gradient
approximation (PBE) [11], as a result of the lack of discontinuity of the density-dependent
exchange correlation potential upon addition (or removal) of an electron to the system [12,13].
A compilation of results for extended inorganic semiconductors and insulators can be found in
reference [14] evidencing that indeed DFT–LDA KS band gaps are too small. On the contrary,
by lack of correlation, Hartree–Fock produces much too large band gaps [15,16]. For sake of
illustration, in the DFT–LDA and Hartree–Fock worlds, the band gap of bulk silicon is about
0.6 and 6.0 eV, respectively, to be compared with the 1.2 eV experimental value.

A similar behaviour can be observed for gas phase organic molecules. We provide in figure 1
the calculated and experimental energy gaps between the highest occupied (HOMO) and lowest
unoccupied (LUMO) molecular orbitals for three paradigmatic molecules in organic electronics
or photovoltaics, namely the C60 fullerene, the tetraphenylporphyrin (H2TPP) and pentacene.
The DFT–LDA KS approach dramatically underestimates the energy gap, whereas the Hartree–
Fock overestimates it. This is consistent with what is known of semiconductors, even though
in the present case the DFT–LDA failure is much larger in percentage, whereas the Hartree–
Fock performs somehow better, as a sign of reduced correlations in ‘few electrons’ systems when
compared with bulk extended materials.

An important step was taken in 1993 by Axel Becke [21], who emphasized the importance of
exact exchange for improving ‘thermochemical accuracy’ in DFT calculations, yielding several
schemes to mix standard (semi)local exchange-correlation functionals with some percentage of
exact exchange. As such, the exchange-correlation potential is no longer a pure density functional,
but contains as well an orbital-dependent contribution leading to a generalized KS (GKS)
framework [22,23]. Such a proposition developed quickly and became extremely popular in the
study of organic systems with the development of hybrid functionals such as the famous Becke
3 parameters B3LYP functional [21]. Even though designed to improve ground state properties
(binding energy, bond lengths, etc.), such a mixing somehow also improves the description of the
electronic properties. From a pragmatic point of view, this was to be expected because standard
DFT with semilocal functionals underestimates band gaps, whereas Hartree–Fock overestimates
them. More fundamental arguments can be invoked relying on two very desirable properties
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Figure 1. HOMO–LUMOgaps for C60, pentacene andH2TPP calculatedwithin DFT–LDA, (restricted) Hartree–Fock, hybrid B3LYP,
OT-BNL [17],α-NKC0 [18], ‘single-shot’ G0W0@LDA and self-consistent on the eigenvalues ev-GW@LDA [19]. The experimental
values (NIST chemistry webbook at [http://webbook.nist.gov/chemistry/]. Calculated as the difference of the experimental
ionization energy and electronic affinity. We adopt the most recent experimental data. The provided ionization energies are
the vertical ones.) are indicated below the charts and by the black thick horizontal line. LDA, B3LYP and HF calculations are
performed at the all-electron cc-pVTZ level with the NWChem code [20]. The GW calculations have been performed with the
FIESTA package. (The FIESTA package is a GW and Bethe-Salpeter code exploiting Gaussian basis sets with resolution of the
identity techniques and explicit calculation of dynamical correlations thanks to contour deformation techniques. See [19] for
technical details.) (Online version in colour.)

verified by the Hartree–Fock formalism, namely (i) the absence of self-interaction, thanks to its
cancellation between the Hartree and Fock exchange terms, and (ii) the correct long-range (LR)
(−1/r) behaviour of the effective potential seen by an electron far away from a molecule or a
surface [24–26].

Despite such desirable features, the popular B3LYP functional, with the mixing of 20% of exact
exchange, does not allow to obtain accurate electronic properties in the case of molecular systems
as evidenced in figure 1. The HOMO–LUMO gap remains too small by several electron volts.
Increasing the amount of exact exchange would certainly open the gap, but would degrade the
ground state properties. It is clearly a difficult task to improve with a single-parameter both
the ground state and the excited-state properties. Further, even for structural properties in the
excited states, the choice of the percentage of exact exchange remains a difficult issue, and may
depend not only on the system of interest, but also on the property to be described. As a recent
important example in the field of organic chromophores, it was shown that a proper description
of the geometry, and related optical absorption spectra, of various isomers of the famous retinal
protonated Schiff base (RPSB) chromophore [27] requires to include as much as 54% of exact
exchange, as incorporated in the M06-2X hybrid functional [28], that is a much larger percentage
of exact exchange than the original B3LYP functional.

To proceed further, we note that the correct LR behaviour in vacuum of the effective exchange-
correlation potential would require 100% of exact exchange, a dramatically too large quantity at
short distance that would spoil the delicate cancellation of errors between local correlation and
local exchange within the DFT framework. As a means to provide more flexibility in designing
improved functionals, Savin and co-workers [29,30]2 introduced range-separated hybrids (RSHs),
thanks to a partitioning of the true (1/r) Coulomb potential into an short-range (SR) erfc(μr)/r
and an LR erf(μr)/r contribution, with (erf) the error function and (erfc) its complementary. This
decomposition allows to properly introduce an SR and LR contribution to the exchange energy,
namely for the LR Fock operator: ΣX,LR(r1, r2) = −ρ(r1, r2) erf(μ|r12|)/|r12|. The local exchange
(and correlation) contributions are treated with standard (semi)local functionals of the density.
Tuning the (μ) parameter, with typical values of 0.2–0.5 bohr−1, allows to adjust the typical decay
length of the local part.

2This partitioning was originally introduced to combine post-Hartree–Fock many-body wave functions calculations, such as
CI for LR exchange and correlation effects, with density functional theory for short-range (SR) contributions.

http://webbook.nist.gov/chemistry/
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The range-separation scheme was further reformulated [31], and an interesting solution to
tune the range-separation (μ) parameter for optimal electronic properties was proposed by Baer,
Neuhauser and Livshits (BNL) [32–34]. The starting observation is that ionization energies and
electronic affinities calculated, thanks to a �SCF approach, namely a difference of ground state
total energies for the neutral and charged molecule, are usually in reasonable agreement with
experiment. As such, the range-separation parameter can be tuned, e.g. to optimize the ionization
potential by enforcing the relation: ε

μ

HOMO = E(N; μ) − E(N − 1; μ), where, for example, E(N; μ)
are the DFT RSH ground state total energies of the system with N electrons obtained with a
fixed (μ) parameter. A crucial observation is that one can find an optimal μ value that provides
a good description of both the ionization energy and electronic affinity, namely a good HOMO–
LUMO gap. This was illustrated in the case of a large set of organic molecules [17], and the results
are reported in figure 1 in the case of C60 and H2TPP (‘OT-BNL’ values). The HOMO–LUMO
gaps are starting to reach a few tenth of an electron volt accuracy, with the caveats that the range
parameter needs to be tuned for each molecule, and that the underlying �SCF technique cannot
be applied to extended systems. However, as shown below, such a functional, ‘educated’ on the
HOMO–LUMO gap, has been also shown to provide remarkably accurate optical properties, as a
signature of the well groundedness of this pragmatic scheme.

Besides the question of optimally tuning the range-separation parameter, several variations
have been proposed around the long-range corrected (LC) scheme, either by changing the (erf)
function with another decaying function, such as the exponential function, mimicking the
screened (Yukawa) Coulomb potential in metals (e.g. [35]), or by providing more flexibility in
the range decomposition such as in the three-parameters CAM-B3LYP functional introduced
by Yanai et al. [36] with an LR contribution to the bare Coulomb potential reading vLR(|r12|) =
(α + β erf(μ|r12|)/|r12|). This generalized form allows to better tune the amount of LR exchange
and to keep some percentage of exact exchange at SR. The original parametrization retained
19% of exact exchange at SR, close to the B3LYP percentage, and 65% at LR with an attenuation
parameter μ of 0.33, offering a good compromise to describe both atomization energies at the
B3LYP level of accuracy and the proper LR behaviour of the exchange-correlation potential crucial
for excited-state properties such as Rydberg or CT optical excitations as described below in §a.

Before turning to the many-body perturbation theory treatment, we briefly introduce another
rationale to design functionals with accurate electronic properties. A generalization of the KS
scheme to fractional occupancy of the electronic energy levels quickly leads to the observation
that the total energy derivative (δE/δN) should be constant for any fractional value of the
number N of electrons between two successive integer values, displaying further a discontinuity
at integer values [12]. In great contrast, the standard density-dependent semilocal functionals
within DFT are convex functionals of N with no discontinuity of (δE/δN) at integer values. On
the contrary, the Hartree–Fock total energy is concave. Such opposite behaviour clearly stand
again as a justification for generalized KS approach mixing both local density-based functionals
with the bare exchange operator. These observations have been recently used as a guideline to
prepare hybrid functionals imposing the linearity of the total energy with respect to fractional
occupancy, yielding much improved KS single-particle energies [37]. Alternatively, ad hoc orbital-
dependent corrections to existing functionals can be imposed in order to enforce the piecewise
linear behaviour of the total energy in between integer values of N. Such a scheme was for
instance demonstrated by Dabo et al. [18] to lead, for a large set of organic molecules, to ionization
potentials and HOMO–LUMO gaps in good agreement with experiment as evidenced in figure 1
(α-NKC0 results).

(b) The many-body Green’s function GW formalism
We now turn to the expression of the self-energy within many-body perturbation theory and
the GW approximation in particular. We will not attempt here to re-derive the expression for
the self-energy within the so-called GW technique [38–41]. We just schematically sketch the
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principal ideas associated with the underlying Green’s function formalism [42] and the functional
derivative approach [43] to many-body perturbation theory, namely

— the (charged) excitation energies associated with adding or removing an electron from
the system can be properly defined as the poles in the energy representation of the
one-particle time-ordered G(1, 2) Green’s function which measures the amplitude of
probability to find an electron (a hole) in position and time (2 = r2, t2) after its introduction
in the system at (1 = r1, t1).

— the equation of motion-, or time-dependent Schrödinger equation for operators, that may
be used to determine G(1, 2), involves a two-body Green’s function G2(1, 2, 3, 4), initiating
a hierarchical chain of increasing order Green’s function with increasing complexity.

— fortunately, the needed two-body G2 operator can be expressed as a function of
the derivative of the one-body G(1, 2) Green’s function with respect to an external
perturbation, allowing to introduce quantities familiar within linear response theory,
namely the susceptibility P(1,2) of the system, that relates the change of the charge
density in (1) with respect to an external perturbation acting in (2), the energy-dependent
dielectric function ε(1, 2) and the related screened Coulomb potential W(1, 2).

The quantities defined here above are however not given in closed form, but are related by a set
of coupled (self-consistent) equations, traditionally labelled Hedin’s equations [38] in condensed
matter physics. These relations read

G(12) = G0(12) +
∫

d(34)G0(13)Σ(34)G(42),

Σ(12) = i
∫ ∫

d(34)G(13)Γ (32; 4)W(41),

W(12) = v(12) +
∫

d(34)v(13)P(34)W(42),

P(12) = −i
∫

d(34)G(13)G(41)Γ (34; 2),

and Γ (12; 3) = δ(12)δ(13) +
∫

d(4567)
δΣ(12)
δG(45)

G(46)G(75)Γ (67; 3),

where v(12) = v(r1, r2)δ(t1 − t2) is the bare Coulomb potential, and Γ (34; 2) the so-called three-
body vertex correction. Such a set of equations can in principle be solved iteratively, starting
from a zeroth-order system where the self-energy is zero, namely the Hartree mean-field
solution, yielding to first-order: Γ (12; 3) = δ(12)δ(13). This simple approximation for the vertex
correction yields the famous GW approximation for the self-energy, written here in the energy
representation3

Σ(r, r′; E) = i
2π

∫
dω eiω0+

G(r, r′; E + ω)W(r, r′; ω)

G(r, r′; E) =
∑

n

φn(r)φ∗
n(r′)

E − εn + 0+ × sgn(εn − EF)

W(r, r′; ω) = v(r, r′) +
∫

dr1 dr2v(r, r1)P0(r1, r2; ω)W(r2, r′; ω),

and P0(r, r′; ω) =
∑

i,j

(fi − fj)
φ∗

i (r)φj(r)φ∗
j (r′)φi(r′)

εi − εj − ω − i0+ ,

3Time homogeneity allows to conclude that the defined operators depend only on the difference (t2 − t1) leading via Fourier
transform to the (h̄)ω energy dependence. A proper mathematical treatment of such Fourier transforms leads to introduce the
small infinitesimals (0+) present in some of the formulae.
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where we have introduced the zeroth-order one-body (εn, φn) mean-field eigenstates. P0(r, r′; ω)
is the non-interacting polarizability (the fi/j are the occupation factors). The summations over
occupied and empty states lead to an O(N4) scaling for GW calculations with respect to system
size, a scaling larger than the standard O(N3) scaling for DFT calculations with (semi)local
functionals.

In practice, the mean-field starting point is never the Hartree solution, but more traditionally
the DFT KS eigenstates which represent in general the ‘best available’ mean-field starting
point. This leads to the standard ‘single-shot perturbative’ G0W0 treatment where the exchange-
correlation contribution to the DFT KS eigenvalues is replaced by the GW self-energy operator
expectation value onto the ‘frozen’ KS DFT eigenstates, namely

EQP
n = εDFT

n + < φDFT
n | ΣGW(EQP

n ) − vXC,DFT | φDFT
n > .

Taking, for example, the LDA to the exchange-correlation potential vXC,DFT leads to the so-called
G0W0@LDA scheme, the most common approach for GW calculations in solids.

While GW calculations for periodic bulk organic systems [44–46] or polymers with short repeat
unit [47–50] appeared more than a decade ago, the case of large gas phase organic molecules such
as fullerene or porphyrins could only be tackled in the past few years [19,51–61] owing to the
cost of performing GW calculations with the traditional implementation for solids relying mostly
on planewaves with periodic boundary conditions. Besides the large number of atoms (a few
dozens) contained in such systems, it is to be noted that large unit cells are required to avoid
cell–cell interactions in periodic boundary conditions, because GW calculations are concerned
with charged excitations, leading to very slow convergence rate with respect to unit cell size.
Several developments were recently introduced to significantly reduce the cost of GW calculations
for organic systems, from the development of localized-basis implementations [19,47,56,62–65] to
techniques allowing to bypass the summation over empty states [46,64,66–69].

As indicated in figure 1 for our three test molecules, the standard G0W0@LDA calculation
significantly improves the quasi-particle properties, leading to errors on the HOMO–LUMO
gap reduced from 3.4 eV within DFT–LDA (mean absolute error) to 0.7 eV within G0W0@LDA.
However, the G0W0@LDA approaches still underestimates the HOMO–LUMO gap, by as much
as 0.9–1.0 eV in the case of pentacene. These results point to the quality of the starting point
KS states when performing single-shot G0W0 calculations. In the case of organic molecules, the
dramatically too small value of the DFT–LDA HOMO–LUMO gap leads to overscreening when
building the polarizability and the resulting screened Coulomb potential, explaining the too small
G0W0@LDA HOMO–LUMO gaps.

Several solutions to that problem have been proposed. A first cure consists of changing the
starting point by using hybrid functionals instead of DFT–LDA [59,60,70]. Another long-standing
line of work consists of self-consistent GW calculations where the screened Coulomb potential
W and/or the Green function G are improved by re-injecting solutions from the previous GW
iteration [14], a scheme that has been recently explored for isolated atoms [71,72] and small
molecules [59,71,73]. As a simple approach to self-consistency, we present in figure 1 the results
obtained by self-consistently updating the eigenvalues in G and W, whereas ‘freezing’ the starting
DFT–LDA KS wave functions, a scheme we label the ev-GW@LDA approach. This leads to a
significant improvement of the ionization potential and energy gap, as recently shown for a larger
set of organic molecules [19,45]. In particular, the HOMO–LUMO gap of C60 and H2TPP are now
within one-tenth of an electron volt from the experimental value.

We conclude this section by briefly emphasizing two important issues that have recently
emerged in the GW study of organic molecular systems. A first important observation is that
the GW approach leads not only to a much better description of the ionization energy and
electronic affinity, but also corrects as well the ordering of levels which, for organic molecules
presenting π and σ states of different nature and localization, can be wrong within LDA or PBE.
This was, for example, demonstrated in the case of DNA and RNA nucleobases [53,54] where the
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Figure 2. Symbolic representation of the four highestπ and σ occupied states in cytosine, with their energy position in LDA,
ev-GW@LDA (ev-GW) and high-level quantum chemistry calculations (CASPT2, EOM-IP-CCSD). Adapted from Faber et al. [53].
(Online version in colour.)

ev-GW@LDA approach was shown to lead to an excellent agreement with high-level coupled-
cluster quantum chemical approaches [53]. This is illustrated in figure 2 where the absolute
position and ordering of the states at the top of the occupied manifold of gas phase cytosine
is represented at several theoretical levels. While DFT–LDA predicts the HOMO level to be a σO

state strongly localized on the oxygen atom, the ev-GW@LDA and high-level multi-detrimental
quantum chemistry techniques correctly describe the HOMO level as a more standard π -state
lying ∼ 2.5 eV below the KS LDA value. As a result, the ev-GW@LDA ionization potential lies
within 0.2 eV of the experimental value. The B3LYP functional corrects the ordering of the levels,
but hardly improves the ionization energy. However, a good agreement with the ev-GW@LDA
values can also be obtained within the framework of tuned ranged-separated hybrids [74].

Another important issue is the observation that the calculation of electron–phonon coupling
constants, namely the variation < δεn/δRν > of the electronic energy levels with respect to an ionic
motion along a ‘Rν ’ vibrational eigenmode, can change significantly from DFT–LDA to GW. It was
shown in particular in the case of C60 that the electron–phonon coupling potential to the LUMO
level, a quantity that used to be quite studied in the framework of fullerides superconductivity,
was 50% larger within GW, leading to a much better agreement with experimental values [75].
The importance of the electron–phonon coupling strength in understanding the ‘adiabatic’ band
structure [76] and mobility of carriers [7] in organic systems certainly call for a careful re-
evaluation of previous studies at the DFT–LDA level. The same conclusions apply to the field
of phonon mediated superconductivity.

3. Time-dependent density functional theory versus Bethe–Salpeter equations
While GW calculations aim at obtaining accurate quasi-particle energies, such as the electronic
affinity, ionization potential, and more generally the entire ‘band structure’ of a given system, to
be compared, e.g. to direct and inverse photoemission experiments, the Bethe–Salpeter formalism
tackles the problem of the neutral optical excitations, namely excitations where the electron
does not leave the system and interacts through the (screened) Coulomb potential with the hole
left in the occupied manifold. As such, the Bethe–Salpeter equation (BSE), originally derived
in the 50s [77] and adapted in the mid-1960s by Sham and Rice in the context of condensed
matter physics [78–80], is a two-body electron–hole eigenvalue problem, very much as the
proton–electron hydrogenoid textbook exercise, but in an environment that provides screening
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through Coulomb and Pauli repulsion between electrons. As another familiar reference for solid-
state physicists, it can be considered as a generalization of the Elliott [81] (or Mott–Wannier)
approach to delocalized excitons in semiconductors. Three independent ab initio implementations
were developed simultaneously in 1998 [82–84]. Because BSE calculations require as an input the
GW quasi-particle energy levels,4 ‘GW-BSE’ calculations on molecular systems such as fullerenes
or porphyrins have also emerged rather recently [88–98], after pioneering studies on small
molecules [99,100] or bulk organic semiconductors [101–103].

The BSE formalism can be straightforwardly compared with TDDFT [104–106] in the so-called
Casida’s formulation [106], which recast the TDDFT problem as a similar eigenvalue problem in
the electron–hole two-body basis, namely(

R C
−C∗ −R∗

)
.

(
[φa(re)φi(rh)]
[φi(re)φa(rh)]

)
=
(

λai
μia

)(
[φa(re)φi(rh)]
[φi(re)φa(rh)]

)
, (3.1)

where the indexes (i,j) and (a,b) indicate the occupied and virtual orbitals, and (re, rh) the electron
and hole positions, respectively. In this block notation, the vector [φa(re)φi(rh)] represents all
excitations (note, for example, that φa(re) means that an electron is put into a virtual orbital),
whereas the vector [φi(re)φa(rh)] represents all de-excitations. As such, R (R∗) describes the
resonant coupling between electron–hole excitations (de-excitations), while the off-diagonal
blocks C and C∗ account for non-resonant coupling between excitations and disexcitations. The
TDDFT and BSE resonant parts can be directly compared, taking for TDDFT its expression for a
general hybrid range-separated functional:

RBSE
ai,bj = δa,bδi,j(ε

QP
a − ε

QP
i )

−〈φa(r)φi(r′)W(r, r′)φb(r)φj(r′)〉
+2〈φa(r)φi(r)v(|r − r′|)φb(r′)φj(r′)〉

∣∣∣∣∣∣∣
RTDDFT

ai,bj = δa,bδi,j(εDFT
a − εDFT

j )

−〈φa(r)φi(r′)vLR
αβμ(|r − r′|)φb(r)φj(r′)〉

+2〈φa(r)φi(r)KDFT(r, r′)φb(r′)φj(r′)〉,
where vLR

αβμ(r) = [α + βerf(μr)]v(r) is the LR part of the Coulomb potential in the general CAM-
B3LYP range-separated formulation. KDFT = (v + f XC) is the sum of the bare Coulomb potential
and the exchange-correlation (semi)local kernel f XC. We use the notation 〈· · · 〉 for the

∫ ∫
dr dr′

double integral. The middle (last) line gathers terms with occupied and virtual orbitals taken at
different (identical) integration variables. For isolated systems, the wave functions can be taken
to be real. The resonant terms have been given explicitly here above for singlet excitations and we
have considered spin-unpolarized systems.

A clear difference between TDDFT and GW-BSE stems from the diagonal part (first line) of
the resonant contributions. The BSE formulation starts from the quasi-particle energy differences
(εQP

a − ε
QP
i ) as given within the GW formalism, whereas the TDDFT formulation uses the KS

(εDFT
a − εDFT

j ) eigenvalues. As emphasized here above, the GW HOMO–LUMO gaps generally
agree well with the experimental value, whereas their KS analogues are usually significantly
underestimated. Consequently, the BSE equations lend support to the intuitive physical picture
that the attractive electron–hole interaction stabilize excitons, leading to an optical gap smaller
than the quasi-particle (photoemission) HOMO–LUMO one. On the contrary, the interaction
terms in the TDDFT formalism contribute to open the usually too small KS HOMO–LUMO gap
in order to obtain optical excitation energies. A second important remark is that the long-range
vLR
αβμ contribution within TDDFT plays the role of the screened Coulomb potential W that appears

in the BSE framework. We will return to that point here below.

4. Optical properties and charge-transfer excitations
Despite the differences highlighted here above, the BSE and TDDFT formalisms usually agree
very well for excitations where the hole and the electron strongly overlap spatially. Such
transitions are often labelled ‘Frenkel excitations’. This concerns in particular intramolecular

4The GW calculations have been sometimes skipped by using a ‘scissor’ correction to the gap, namely opening the KS gap by
some ‘educated value’ [85–87].
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Figure 3. (a) Evolution as a function of the ZnBC–BC distance (see inset) of the energy of the intramolecularπ → π∗ Q and
B (Soret) excitations and of the CT excitations showing a clear (−1/D) dispersion. (b) Experimental and theoretical lowest-
lying CT excitation energies in a family of gas phase donor–acceptor complexes composed on TCNE with benzene, toluene,
o-xylene and naphthalene donors. The inset shows the HOMO (left) and LUMO localized respectively on the donor and the
acceptor (TCNE/anthracene dimer). G0W0/BSE and ev-GW/BSE indicate BSE calculations based on quasi-particle energies
obtained at the G0W0@LDA level or at the ev-GW@LDA level with partial self-consistency on the eigenvalues. The BNL and
B3LYPdata indicate TDDFT calculationswith theBNLand theB3LYP functionals (from [116]). Figure adapted from [94,96]. (Online
version in colour.)

excitations in molecules such as the one studied here above (fullerenes, acenes, porphyrins, etc.)
where the HOMO and LUMO eigenstates are uniformly distributed. The literature emphasizing
the accuracy of TDDFT for predicting correctly the optical spectra of such systems, even in cases
where standard local and adiabatic semilocal kernels are used, is too large to be reported here,
and we refer the reader to a recent benchmark for a large number of functionals on a large set of
reference molecular systems [107]. One example is provided below.

We focus more specifically on the so-called CT excitations for which the photoexcited electron
and the hole left behind are spatially separated. Such excitations are central to many applications
in photovoltaics, photocatalysis, photosynthesis and biology. Further, it is now well-known that
standard TDDFT dramatically fails to describe such excitations as explained here below. As such,
these non-local excitations, as well as the so-called Rydberg transitions to high-energy delocalized
weakly bound states, have been central to the motivations for developing range-separated
hybrids (see e.g. the CAM-B3LYP seminal paper [36]).

(a) A historical problem: the zincbacteriochlorin–bacteriochlorin complex
One of the first systems revealing an important difficulty associated with TDDFT is a
donor–acceptor organic complex mimicking photosynthetic processes in bacteria, namely the
zincbacteriochlorin–bacteriochlorin (ZnBC–BC) complex, initiating several theoretical studies at
various TDDFT or quantum-chemistry post-Hartree–Fock levels [108–112]. In such molecular
dimers, the optical excitations can be classified into two categories, namely intramolecular
excitations, where the promoted electron remains on the same molecule, and CT excitations for
which the photoexcited electron ‘jumps’ from the donor to the acceptor. The ZnBC–BC atomic
structure is provided as an inset in figure 3a.

Comparing now the various formalisms, it was shown that TD-LDA, TD-B3LYP and GW-
BSE excitation energies associated with intramolecular transitions, such as the lowest π → π∗ ‘Q’
transitions, all agree with a maximum discrepancy of 0.2 eV (see table I in [96]). As emphasized
here above, TDDFT with standard adiabatic semilocal kernels reproduces usually very well
Frenkel excitations. On the contrary, CT excitations within TD-LDA were underestimated by
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about 1.6 eV when compared with GW-BSE. Performing TDDFT calculations with the global
B3LYP hybrid and the range-separated CAM-B3LYP functional reduced the error to about 1
and 0.1 eV, respectively. Clearly, introducing a sufficient amount of exact exchange dramatically
improves the description of CT excitations at the TDDFT level, without degrading the description
of the Frenkel transitions.

Charge-transfer excitations verify a simple asymptotic behaviour in the so-called ‘Mulliken
limit’ [113] of a large distance D between the donor and the acceptor. Namely, the lowest lying CT
excitation should converge to: ECT0(D) = EA(acceptor) − IP(donor) − 1/D, where EA (acceptor)
and IP(donor) are the acceptor electronic affinity and the donor ionization energy. The (−1/D)
scaling with distance is just the electrostatic interaction (in atomic units here) between the hole left
on the donor and the electron that has jumped onto the acceptor. It was shown very early [109] that
within TDDFT using standard (semi)local exchange correlation kernels, the CT excitation energies
were indeed underestimated by as much as several electronvolts, showing further a dispersion-
less character, failing to follow the correct (−1/D) scaling behaviour.

To understand this behaviour, it is instructive to consider the projection of the resonant part
R of the TDDFT or BSE two-body Hamiltonian into the subspace spanned by the HOMO(D) and
LUMO(A) levels of the donor (D) and the acceptor (A) in the limit of non-overlapping donor
and acceptor wave functions. We note Rhl,hl such a scalar energy. In the long distance limit, the
previous equations for Rai,bj yield

RBSE
hl,hl → (εQP

l − ε
QP
h ) −

(
1

εM

)
〈|φl(r)|2|φh(r′)|2v(|r − r′|)〉

and

RTDDFT
hl,hl → (εDFT

l − εDFT
h ) − (α + β)〈|φl(r)|2|φh(r′)|2v(|r − r′|)〉,

noting that in this limit φl(r)φh(r) → 0. We introduced the macroscopic (LR) dielectric constant
(εM).

The standard TDDFT approach, namely a TDDFT based on a density-dependent local XC
functional, can be recovered by setting (α) and (β) to zero. Inspection of the TDDFT asymptotic
limit allows then to understand the lack of dispersion with donor/acceptor distance of the CT
excitation, and the fact that the CT excitation energies reduced to the (too small) HOMO–LUMO
KS gap. In the case of hybrid functionals without any range separation (namely β = 0), then the
scaling reduces to (−α/D), with e.g. (α = 0.2) in the B3LYP formulation, allowing to partially
recover the correct dispersion. In the original CAM-B3LYP formulation [36], (α + β) was set
to 0.65, starting to approach the ideal asymptotic behaviour. The original LR-corrected (LC)
range-separated hybrid (α = 0, β = 1) allows to recover exactly the correct asymptotic (−1/D)
behaviour. Combined further with, e.g. the Baer–Neuhauser–Livshits (BNL) idea to tune the
range-separation parameter in order to obtain the correct HOMO–LUMO gap (see §2a), both the
correct (−1/D) scaling and asymptotic quasi-particle HOMO–LUMO gap can be recovered.

Clearly, in the Bethe–Salpeter formalism, the dielectric constant εM for donor and acceptor
fragments separated by vacuum reduces to one, so that the correct (−1/D) limit is recovered,
converging towards the correct HOMO–LUMO gap described at the GW level. This is illustrated
in figure 3a where the dispersive character of the CT excitations is clearly reproduced. Further,
in the limit of isolated BC or ZnBC molecules, the GW-BSE intramolecular (Frenkel) π → π∗
‘Q’ transitions are found to agree within 0.1 eV when compared with experiment [96]. As a
result, both intramolecular and CT excitations are correctly reproduced. Similar results were
obtained in the case of donor molecules (the coumarins) of interest for dye-sensitized solar
cells (DSSCs), with an excellent description of excitations showing mixed Frenkel and CT
character [95], providing good agreement with tuned range-separated hybrid calculations [114].
This ability to describe correctly excitations with various spatial character is a crucial feature when
attempting to understand the evolution of Frenkel excitations into resonant ‘hot’ CT states which
are believed to be the initial step for exciton dissociation in organic solar cells [98]. As another
important remark, the comparison between formalisms shows that the CAM-B3LYP TDDFT (α, β)



12

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130271

.........................................................

parameters would have to be re-adjusted in another screening environment (solvant, bulk, etc.).
In the parameter-free Bethe–Salpeter formalism, the dielectric function and the screened Coulomb
potential automatically account for the proper screening properties.

(b) Donor–acceptor complexes and comparison with experiment
An interesting family of systems allowing to further illustrate the above-mentioned
considerations is a set of donor–acceptor gas phase complexes composed of the tetracyanoethylene
(TCNE) acceptor molecule with acenes (benzene, naphthalene, etc.) and their derivatives. The
interest of such systems is that the low-lying optical excitations are clear CT states well
characterized by available gas phase experimental data [115], triggering several global and range-
separated hybrid TDDFT [116] and GW-BSE studies [94,97,117]. The HOMO and LUMO states
for the TCNE–anthracene complex are represented in figure 3(b, inset) revealing clearly the
donor–acceptor character of such molecular dimers.

As shown in figure 3b, the TD-B3LYP calculations (blue up triangles), despite the 20% of
exact exchange, dramatically underestimate the excitation energies when compared with the
experimental data (red dots). The G0W0-BSE calculations (yellow diamonds) provide better
results, but still underestimate the excitation energies, owing to the too small G0W0@LDA
HOMO–LUMO gaps (see §2b). On the contrary, both the range-separated ‘optimally tuned’
hybrid TD-BNL calculations (green squares) [116], and the GW-BSE calculations (black diamond),
with self-consistency on the eigenvalues [94], provide an excellent agreement with experiment. As
emphasized above, the range-separation (μ) parameter involved in the range-separated hybrid
TDDFT calculation has been tuned to reproduce the correct HOMO–LUMO gap, following the
BNL prescription. On the contrary, the GW-BSE approach is parameter-free.

5. Conclusion
After decades of expertise in applying the GW-BSE formalism to inorganic semiconducting or
insulating systems, there is an emerging line of work devoted to extending such techniques
to organic molecular systems for applications in electronics, photovoltaics, photocatalysis and
biology. As emphasized here above, excellent results can be obtained in describing the electronic
charged and neutral (optical) excitation energies of a large variety of systems. While the
GW-BSE formalism cannot be claimed to provide more accurate results than DFT or TDDFT
calculations with ‘well-parametrized’ range-separated hybrids, a clear advantage of the many-
body perturbative Green’s function approach is that it is parameter-free and has been shown
to provide reliable results in a large variety of inorganic or organic systems, with a metallic or
strongly insulating character, in finite size or extended systems, demonstrating similar accuracy
(a very few tenth of an eV) for local or non-local excitations. This is an important feature for
upcoming studies of hybrid systems mixing, e.g. organic molecules with extended metallic or
insulating inorganic substrates (TiO2 in DSSCs, nanotubes, graphene, metallic electrodes, etc.).

Even though GW-BSE calculations on systems comprising a few hundred atoms are
nowadays feasible [96], offering as a matter of fact the same O(N4) scaling with size than DFT
calculations with hybrid functionals, many-body perturbation theory calculations will certainly
remain computationally more expensive that (TD)DFT implementations. However, the recent
developments in the field (localized basis formulations, resolution of the identity techniques,
removal of the summation over empty states, etc.) clearly allow to provide reference calculations
on close to realistic systems. As such, using GW-BSE calculations to ‘educate’ improved hybrid
functionals is certainly a valuable direction of work: clearly, the development of ‘locally screened’
range-separated hybrids, namely with a space-dependent Coulomb attenuation parameter [118],
already points in the direction of mimicking within DFT the behaviour of the screened Coulomb
potential W at the heart of the GW and Bethe–Salpeter formalisms.

Despite such recent progress in performing many-body perturbation theory for organic
systems, there is still much to be done to be able to provide insights into complex mechanisms
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such as exciton dissociation at disordered bulk donor–acceptor interfaces in photovoltaic cells,
or bond breaking in the excited state in photocatalytic applications. A first important goal
along the line of applying MBPT to more realistic systems is the development of specific
‘embedding’ techniques in order to be able to treat in an accurate but affordable way the
effect of the environment (solvant, disordered crystalline phase, etc.). Adapting the discrete or
continuous [120] (and [119] for a recent review) polarizable models already available to TDDFT
is certainly an important direction in the field.

A further important challenge in the GW-BSE framework is the calculation of gradients in
the excited states. A specific case is that of the forces acting on the ions upon photoexcitation, a
key ingredient in a field such as photochemistry. Even in less extreme applications not involving
bond breaking, such as the understanding of the absorption and fluorescence spectra in organic
molecules, the knowledge of the relaxation energy upon photoexcitation, and of the zero-point
motion energy contribution, allowing to differentiate vertical versus adiabatic transition energies,
has proved to be crucial in order to compare theory with experiments [121]. Calculations of
analytic gradients in the excited states within TDDFT are now routinely implemented in most
codes. Even though the quality of the obtained potential energy surface and of the related
relaxed molecular geometry in a given excited state may drastically depend on the chosen
functional [121], the formalism for calculating the gradients, without using expensive finite
difference techniques, is now well documented [122,123]. Such analytic gradients do not exist
at the GW/BSE level and work along that line is required [124].
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