Non-linear response of low dimensional structures

C. Attaccalite¹, A. Naguer¹, E. Cannuccia¹, M. Grüning²

Institut Neel, CNRS, Grenoble (France) claudio.attaccalite@grenoble.cnrs.fr
School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK

We present an *ab-initio* study of non-linear response of low dimensional structures. In particular we investigate second-harmonic generation (SHG) in two dimensional crystals, MoS₂, h-BN, ZnO, GaN and SiC, and third-harmonic-generation (THG) in carbon nanotubes and nanoribbons. The non-linear response functions are obtained from a real-time approach based on dynamical Berry phase to threat the coupling between the external field and electrons.

Theory: a real-time approach to study non-linear response functions

We start from the Kohn-Sham eigenvectors and eigenvalues plus an external electric field

We propagate in real-time a Schroedinger like equation where correlation effects are included as a single particle operators in H⁰_k

> Solve Euler-Lagrange equations: $i|\dot{v}_{\mathbf{k},m}\rangle = \left(\hat{H}^{0}_{\mathbf{k}} + \hat{w}_{\mathbf{k}}(\boldsymbol{\mathcal{E}}) + \hat{w}^{\dagger}_{\mathbf{k}}(\boldsymbol{\mathcal{E}})\right)|v_{\mathbf{k},m}\rangle$

Polarization is calculated in terms of dynamical Berry-Phase Phys. Rev. B **88**, 235113(2013)

Fourier analysis is used to extract all the response functions $\chi^{(1)}, \chi^{(2)}$...

Second Harmonic Generation (SHG) in 2D crystals

Correlation effects are larger in low dimensional systems. In this example we show the SHG of an **h-BN monolayer**. Bound excitons are clearly visible in the linear and non-linear response PRB **89**, 081102(R) (2014)

<u>Third-Harmonic Generation in nanotubes and nanoribbons</u></u>

Third-Harmonic Generation in a carbon nanoribon, compared with the imaginary part of the dielectric constant calculated at ω and 3ω

along the z-direction (comparison with experiments is working in progress)

We studied non-linear response of different nanostructure by means of a novel and efficient approach in realtime. We showed that excitons play a major role not only in the linear response but also in the non-linear one due to the reduce dimensionality and the poor screening.

