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Preface

The use of semiconductors in electronic devices has rapidly grown since the 50’s.

In order to understand the experimental results, a large theoretical effort has been

devoted to calculate their electronic and optical properties.

Even if a considerable progress has been made in the field of ab–initio calcu-

lations of the electronic band structures, most of the standard approaches neglect

a crucial ingredient: the effect of the lattice vibrations (i.e. electron–phonon in-

teraction). Electrons and atomic vibrations are commonly decoupled and studied

separately, implicitly assuming that the atoms are frozen in their crystallographic

positions. This is the well known “adiabatic” or Born–Oppenheimer approximation

and it represents a well established starting point to interpret experiments, that

instead, are usually carried out at room temperature. Quoting Manuel Cardona1

”...theorists often do not even bother to compare their calculations with available

low temperature measurements, using instead more easily accessible room temper-

ature spectra”.

Actually even when T → 0K the one–particle and the two–particle electronic

excitations spectra are affected by the zero point motion effect, connected to the

quantum–mechanical nature of the atoms. This effect can induce a significant cor-

rection to the electronic states that questions the accuracy of the purely electronic

theories.

The diamond band gap is a striking example. Diamond has a large Debye tem-

perature (∼ 1900K). Nevertheless the gap renormalization induced by the electron-

phonon interaction, as shown in Fig. 1, was estimated to be 370 meV in one of the

first semiempirical calculations. If the zero point motion effect was properly taken

into account the gap renormalization would reduce the discrepancy between the

experimental value (5.48 eV ) and the calculated one2 (5.79 eV ), to 0.06 eV .

In quasi one–dimensional materials with a Peierls ground state, like trans–

1M. Cardona, Solid State Commun. 133, 3 (2005)
2M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007)
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Figure 1: Optical gap of Diamond as a function of temperature.

polyacetylene, the zero–point motion is expected to be comparable with the lattice

distortion. The resulting disorder causes the electronic properties, like the density

of states, to deviate from those predicted for a rigid undistorted lattice. As a con-

sequence the decoupling between the electronic and atomic degrees of freedom is

bound to fail.

In this thesis I will study from first principles the effect of the electron-phonon

interaction in polymers.

In Chapter 1 the theoretical tools to describe electrons are introduced: the Den-

sity Functional Theory (DFT) and the finite temperature many–body approach.

In Chapter 2 I will illustrate how DFT and the linear response theory of lattice

vibrations combine into Density Functional Perturbation Theory (DFPT). Only

by taking into account the mutual effects of the electronic correlation and atomic

vibrations it is possible to obtain accurate phonon dispersions.

In Chapter 3 I will review the Heine Allen Cardona (HAC) approach to the

electron-phonon coupling theory. It still represents a successful and predictive tool

to study polaronic effects in an ab–initio manner. I will show how, in polymers, this

approach leads to numerical instabilities, mainly due to the adiabatic approximation

on which it is based. Then I will extend the HAC approach to a fully dynamical

formulation within the many-body perturbation theory. The numerical oscillations

of the HAC approach will be therefore connected to the existence of intense poles of

the self-energy close to the bare electronic energies, that lead to a striking, as well
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as unexpected, breakdown of the quasiparticle picture.

In Chapter 4 the many-body formulation will be applied to polymers. Multi-

ple structures will be shown to appear in the spectral functions even at T = 0K,

revealing the key role played by the zero point motion effect. The physical interpre-

tation of these structures will be connected to the existence of complicated polaronic

states composed by coherent packets of electron/phonon states. The intrinsic, non

perturbative, nature of these states will be disclosed by mapping the many-body

problem to the solution of an eigenvalue problem. In this way, I will show how the

spatial localization of electrons and atoms is deeply modified in the polaronic state.

I will interpret the quasiparticle breakdown in terms of the spatial distribution of

the electronic charges and in terms of the isotope effects.

The final picture will be of a coupled electronic and atomic dynamics well beyond

the state–of–the–art picture. These results represent a potentially ground–breaking

re–interpretation of the electronic dynamics in carbon based nanostructures.
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Introduction to polymers: from

plastics to optodevices

Natural polymers have been part of humans’ life for centuries as natural rubbers for

example, or in the cellulose as constituent of paper and wood.

With the growing up of plastic industry a large variety of synthetic polymers

have been produced in order to meet the requirements coming from the everyday’s

life. Today, polymers are commonly used in thousands of products as plastics,

elastomers, coatings, and adhesives, as well as children’s toys and aircrafts.

The ability to synthesize polymers with a wide range of stiffness, strength, heat

resistance, density goes together with an intense scientific research. However many

new experimental applications of polymers are still entrusted to experimental evi-

dences, laking of a robust theoretical support.

As far as three decades ago polymers were known and used for their attractive

chemical, mechanical, and electrical properties, like polyethylene. In 1977 a for-

tuitous discovery shed light over the possibility to combine the flexibility and low

weight of plastics with electric properties of metals. A new type of polymers, the

conductive polymers, came in fact to the fore. The first example of conductive

organic polymers was trans-polyacetylene (see Sec. 2.2) whose electrical conductiv-

ity can be tuned over a range of eleven orders of magnitude by iodine doping. H.

Shirakawa, A.J. Heeger and A.G. Mc Diarmind were awarded the Nobel Prize in

Chemistry in 2000 for this discoveries.

In order to conduct electricity, polymers must be conjugated. Polymers are 1D

chains made up of repeated structural units linked by chemical covalent bonds. In

conjugated polymers in particular, the chain is characterized by alternated single

and double bonds between the carbon atom. Only the electrons of the double bonds

contribute to the electrical conductivity, and their delocalization makes polymers

suitable to transport charge. Recently polymers have also been employed as flexible

substrates in the development of organic light-emitting diodes for electronic display.
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The theoretical description of the conducting properties has been subject of an

intense research activity. Especially the relation between electron-electron interac-

tion and the electron-phonon interaction is still under investigation. The polymer

chain can undergo local reorganization of the π-electron bonding in the vicinity of

an additional charge. As a consequence the charge is trapped in a state that can

be described as a soliton, for the particular case of trans-polyacetylene, and more

generally as a polaron.

The prediction of the solitonic states by the Noble Prize laureate J.R. Schrieffer

represents a first theoretical evidence for the strong coupling between the electronic

and the atomic degrees of freedom.
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Chapter 1

Particles and quasi particles at

finite temperature

Electrons and nuclei are the fundamental particles that dictate the nature of the mat-

ter, in each of its forms: atoms, molecules or crystals. A typical physical system is

constituted by a set of N electrons interacting by means of the Coulomb interaction.

Furthermore each electron interacts with the ionic potential and the distribution

of the atomic positions characterizes the configuration of the system. Most of the

standard approaches, devised to study the electronic properties in the condensed

matter field, relies on the assumption that the atomic vibrations only slightly alter

the electronic properties. Electrons and atomic vibrations are decoupled and studied

separately. This is the well known “adiabatic” or Born–Oppenheimer approxima-

tion.

A large theoretical effort is devoted to find accurate and robust methods to treat

the electronic ground state. The aim is to provide universal methods that describe

real systems in nature. By far the most widespread “first principles” approach de-

signed to permit quantitative calculations of solids is Density Functional Theory (see

Section 1.2). The solution of the Kohn–Sham equations of DFT yields a whole spec-

trum of single particle states. One would be tempted to identify the corresponding

eigenvalues with excitation energies. Such an interpretation is not always correct:

the Kohn–Sham wave functions and eigenvalues are only mathematical tools and

cannot be endowed with a physical meaning. Nevertheless Kohn–Sham eigenvalues

can be corrected using Green’s functions techniques (see Sec. 1.3 and 1.4) within

Many Body Perturbation Theory (MBPT).

By conjugating MBPT with DFT it is possible to devise a powerful first princi-

ples method to determine accurately quasi particle excitations in solids. The main
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ingredient of this approach is the electronic self–energy that contains all many–

body exchange and correlation effects beyond the Hartree potential. The great

advantage of the Green’s functions approach is that it yields directly the most im-

portant physical properties of the system. As a consequence the Green’s functions

technique at zero temperature has been widely used to calculate physical quantities

to be compared with the experiments even if they are actually carried out at finite

temperatures.

Since the goal of many-body theory is to explain experiments and to predict

them, the aim of this work is to extend the Green’s functions technique to a more

general framework, including an explicit dependence on temperature. This formal-

ism, originated by Matsubara [1], will be extended and merged with DFT.

In this chapter I will introduce the basic theoretical tools devoted to the descrip-

tion of finite temperature effects on the electronic properties. The starting point of

all results shown in this thesis is an accurate description of the electronic ground

state. For this reason I will first review the Born–Oppenheimer approximation in

Sec. 1.1, then Density Functional Theory in Sec. 1.2, followed by the formulation of

the zero and the finite temperature Many Body Perturbation Theory in Secs. 1.3

and 1.4 respectively.

1.1 The Born–Oppenheimer Approximation

Any material, from a small molecule to a crystal is made up of a great number of

interacting electrons and nuclei described by the Hamiltonian

H =
∑

I

−1

2
∇2

I +
∑

i

−1

2
∇2

i +
1

2

∑

I 6=J

ZIZJ

|RI −RJ |
+

1

2

∑

i 6=j

1

|ri − rj|
+
∑

i,I

−ZI

|ri −RI |
= TN (RI) + Te(r) + VI−I(RI ,RJ) + Ve−e(ri, rj) + Ve−I(r,RI), (1.1)

where the indices i,j refer to the electrons, and the indices I,J to the nuclei. The

terms appearing in Eq. (1.1) are respectively the kinetic energy of nuclei and elec-

trons, the coulomb interactions between nuclei, between electrons and between nuclei

and electrons.

The solution of the related Schrödinger equation is clearly impossible without

introducing appropriate approximations. The first one used is based on the fact

that electrons and ions have different masses. As a consequence the nuclear motion,

in most materials is on a time scale much longer than typical electronic scales. The

ionic and electronic degrees of freedom can be then decoupled and treated separately.
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If the nuclear masses MI , much larger than the electron mass m, were actually

treated as infinite, the nuclear kinetic energy could be dropped and the nuclei could

be thought as “fixed” in some assigned configuration {R}. The atomic configura-

tion provides the external potential Ve−I(r, {R}) and determines the Schrödinger

equation for the electrons

[Te + Ve−e + Ve−I(r, {R})]ψm(r, {R}) = ǫm({R})ψm(r, {R}). (1.2)

The electronic wavefunctions ψm(r, {R}), as well as the eigenvalues ǫm({R}), de-
pend on the parameters {R}; the suffix m summarizes the electronic quantum num-

bers. As the parameters {R} are varied, the eigenvalues ǫm({R}) define the so

called Born–Oppenheimer surfaces. Electrons, then, lay on energy surfaces whose

minimum is in correspondence of the atomic equilibrium configuration {R0}.
After solving Eq. (1.2), for each fixed {R} the exact many-body wavefunction

can be expanded

Ψn(r, {R}) =
∞∑

m=1

χnm({R})ψm(r, {R}). (1.3)

We obtain a set of expansion coefficients χnm for each {R}. We insert this completely

general representation of Ψn(r, {R}) in the full Schrödinger equation related to the

Hamiltonian (1.1) to obtain

∑

m ψm(r, {R}) [TN + VI−I ]χnm({R}) +∑m χnm({R}) [TNψm(r, {R})]+
+
∑

m χnm({R})ǫm({R})ψm(r, {R}) = En

∑

m χnm({R})ψm(r, {R}). (1.4)

If we multiply this equation by ψk(r, {R}) and integrate over the electron coordinates

dr, and use the orthogonality of ψm, we arrive at

[TN + VI−I + ǫk({R})] χnk({R}) +
∑

m

χnm({R})〈ψk(r, {R}) | TN | ψm(r, {R})〉

= Enχnk({R}). (1.5)

The result is a system of infinitely coupled equations. The Born–Oppenheimer

approximation consists of neglecting the off–diagonal matrix elements 〈ψk | TN |
ψm〉. In this way the approximate equation is obtained

[TN + VI−I + ǫk({R}) + 〈ψk | TN | ψk〉]χnk({R}) = Enχnk({R}), (1.6)

where the electron eigenvalues ǫk and the matrix elements 〈ψk | TN | ψk〉 act as a

potential terms for the ionic motions. We can solve the Schrödinger equation (1.6)

for the ionic motion and the electron Schrödinger equation (1.2) separately.
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This is the Born–Oppenheimer approximation [2] that, by exploiting the mass

difference between electrons and nuclei and consequently assuming that the ne-

glected matrix elements are small, describes the interdependence between electronic

and nuclear dynamics.

1.2 Density–Functional–Theory

The physics of an interacting electronic system perturbed by an external disturbance

can be described writing the Hamiltonian like

Htot = H +Hext, (1.7)

where Htot is the total Hamiltonian and Hext is an external perturbation.

Although the system is initially at rest, the evolved ground state under the action

of the external disturbance acquires components over all the possible excited states

of the system.

The calculation of these excited states is, however, a formidable task. Many

different approaches are possible but all of them have to restore some reasonable

approximations. In Section 1.3 I will introduce the Green’s function concept where

the excited states are linked to the spectral decomposition of the Green’s function .

A completely different approach is devoted to the definition of the best single–

particle potential able to reproduce the full spectra of excitations of the system.

Clearly in this case everything is described in terms of Fock states, product of these

“best” single–particle states. In the Hartree and Hartree–Fock approximations, the

“best” single–particle potential is defined by means of a variational principle.

A similar approach is given by the Thomas–Fermi model [3], where the ground

state energy is expressed in terms of the density alone. This could appear as a

heuristic attempt to cut the chain of many–body correlations contained in the full

interacting Hamiltonian.

Moreover the idea that the ground state properties of a quantum many–particle

systems can be characterized solely in terms of the one–particle density is not ob-

vious. The Thomas–Fermi model still remains a heuristic model, where the link

between ground state energy and density is not formally justified.

In this framework the basic theorem of Hohenberg–Kohn has a fundamental

importance. The original theorem states that an exact representation of the ground

state properties of a stationary, non relativistic many–particle system in terms of

the exact ground state density is possible. This is the basis of Density–Functional–

Theory (DFT).
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In the following I will describe this basic theorem for a rather simple case. A

rigorous foundation of DFT has been extended to cover most of the situations of

interest [3].

1.2.1 The Hohenberg–Kohn theorem

The standard approaches to the solution of a so intricate problem require to assume

that the electronic problem can be decoupled from the atomic one. Atoms are gen-

erally assumed to be frozen in their crystallographic positions. As a consequence the

electronic Hamiltonian contains a Coulomb part (the interaction between electrons)

and a single–particle contribution (the kinetic energy and the interaction between

electrons and nuclei).

The latter term is completely defined if the external potential V̂ (r) is given

Ĥ = T̂ + V̂ + Ĥcoul. (1.8)

In second quantization Eq. (1.8) reads

Ĥ = −
∫

drψ† (r)
∇2

2
ψ (r) +

∫

drψ† (r) V̂ (r)ψ (r) + Ĥcoul. (1.9)

To prove the Hohenberg–Kohn theorem [4] we will define a set V of local one–particle

potentials defined in such a way that the solutions of each eigenvalue problem

Ĥ|Φ〉 =
(

T̂ + V̂ + Ĥcoul

)

|Φ〉 = E|Φ〉 V ∈ V, (1.10)

leads to a non–degenerate ground state for the N electrons system:

Ĥ|Ψ〉 = Egs|Ψ〉. (1.11)

Collecting the ground states in the set Ψ we have defined, via the solution of

Schrödinger Eq. (1.11), a map

C : V → Ψ. (1.12)

This map is surjective by construction: Ψ contains no element which is not associ-

ated with some element of V.
Next, for all ground state wavefunctions contained in Ψ, we will calculate the

ground state densities

n (r) = 〈Ψ|ψ† (r)ψ (r) |Ψ〉, (1.13)
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establishing a second map:

D : Ψ → N . (1.14)

This map of the ground state wavefunctions on the set of ground state densities N
is again surjective.

The Hohenberg–Kohn theorem, demonstrated in Ref. [4], is then: the map C and D

are also injective (one to one) and thus fully invertible.

From the invertibility of maps C and D, three statements of Hohenberg–Kohn

theorem follows:

(1st): having established that a unique inversion of map D is possible

D−1 : n (r) → |Ψ [n]〉. (1.15)

the first statement of Hohenberg–Kohn theorem can be formulated: the ground

state expectation value of any observable is a unique functional of the exact

ground state density

〈Ψ [n] |Ô|Ψ [n]〉 = O [n] , (1.16)

The inverse map

(CD)−1 : n (r) → V (r) , (1.17)

tells us that the knowledge of the ground state density determines the external

potential of the system and thus, as the kinetic energy and the Coulomb

interaction are specified, the entire Hamiltonian.

(2nd): The Hohenberg–Kohn theorem establishes the variational character of the en-

ergy functional

EV0
[n] ≡ 〈Ψ [n] |T̂ + V̂0 + Ĥcoul|Ψ [n]〉, (1.18)

where V0 is the external potential of a specific system with ground state density

n0 (r) and ground state energy E0. The state |Ψ [n]〉 is generated from the

elements of N via D−1. EV0
[n] has the property

E0 < EV0
[n] for n 6= n0, (1.19)

8



and

E0 = EV0
[n0] . (1.20)

Thus the exact ground state density can be determined by minimization of

the functional EV0
[n], in short

E0 = min
n∈N

EV0
[n] . (1.21)

(3rd): The map D−1 does not depend on the potential V0 of the particular system

under consideration. Thus

EV0
[n] = FHK [n] +

∫

dr V0 (r)n (r) , (1.22)

with

FHK [n] = 〈Ψ [n] |T̂ + Ĥcoul|Ψ [n]〉. (1.23)

The functional FHK [n] is universal in the sense that it does not depend on V0.

The three statements of invertibility, variational access and universality constitute

the classical formulation of the Hohenberg–Kohn theorem.

1.2.2 Kohn–Sham equations

The Hohenberg–Kohn theorem offers no practical guide to the explicit construction

of the FHK universal functional. For this purpose one still has to face the full

intricacies of the many–body problem.

Although there are some energy functionals for Coulomb systems derived with

the theory of the homogeneous electron gas or in other, more elaborated approaches,

the situation cannot be considered satisfactory. Only thanks to the approach intro-

duced by Kohn and Sham [5] it is possible to calculate the ground state properties

of many–particles Coulomb systems with great accuracy.

Consider an auxiliary system of N non–interacting particles described by the

Hamiltonian

Ĥs = T̂ + V̂s, (1.24)

According to the theorem of Hohenberg–Kohn, there exists a unique energy func-

tional

Es [n] = Ts [n] +

∫

dr Vs (r)n (r) , (1.25)
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for which the variational principle yields the exact ground state density ns (r) cor-

responding to Ĥs. Ts [n] denotes the universal kinetic energy functional of non–

interacting particles.

The central assertion of the Kohn–Sham scheme is: for any interacting system,

there exists a local single–particle potential Vs (r) such that the exact ground state

density n (r) of the interacting system equals the ground state density of the auxiliary

problem,

n (r) = ns (r) . (1.26)

Thus the ground state density n (r) possesses a unique representation

n (r) =
∑

i=1...N

|φi (r)|2 , (1.27)

in terms of the lowest N single–particle orbitals obtained from the Schrödinger equa-

tion
[

−∇2

2
+ Vs (r)

]

φi (r) = ǫiφi (r) . (1.28)

Now consider a particular interacting system with external potential V0 (r) and

ground state density n0 (r). To determine the auxiliary potential Vs,0 (r) which

generates n0 (r) via

n0 (r) =
∑

i=1...N

|φi,0 (r)|2 , (1.29)

[

−∇2

2
+ Vs,0 (r)

]

φi,0 (r) = ǫi,0φi,0 (r) , (1.30)

the exchange–correlation function Exc [n] is introduced as

EV0
[n] = Ts [n] +

∫

dr V0 (r)n (r) + 1/2

∫

dr

∫

dr′ n (r) v (r, r′)n (r′) + Exc [n] ,

(1.31)

Exc [n] = FHK [n]− 1/2

∫

dr

∫

dr′ n (r) v (r, r′)n (r′)− Ts [n] ; (1.32)

with v (r, r′) the Coulomb interaction. Now the Hohenberg–Kohn variational princi-

ple ensures that EV0
[n] is stationary for small variations δn (r) around the minimum

density n0 (r). If we define

Vxc ([n0] , r) =
δExc [n]

δn (r)

∣
∣
∣
∣
n0

, (1.33)
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the assumption that the system is non–interacting representable (the KS ansatz)

also for small deviations around the [n0 (r) + δn0 (r)] allows to write, by neglecting

second order terms,

δTs = −
∫

dr Vs,0 (r) δn (r) . (1.34)

Thus one is left with the final expression

Vs,0 (r) = V0 (r) +

∫

dr′ v (r, r′)n0 (r
′) + Vxc ([n0] , r) . (1.35)

Eqs. (1.29–1.30) and the potential defined in Eq. (1.35) represents the classical Kohn–

Sham scheme.

1.2.3 Local Density Approximation

In principle, the solution of the Kohn–Sham Eqs. (1.29–1.30) with the exact exchange–

correlation potential, would give a set of fictitious single particle eigenstates whose

density of states equals that one of the fully interacting system. Unluckily the

exact exchange–correlation potential is not known and one has to find reasonable

approximations for Vxc.

One of the most widely used is the Local Density Approximation (LDA). Intro-

ducing the exchange–correlation energy density ǫxc ([n] ; r) as

Exc [n] =

∫

drn (r) ǫxc ([n] ; r) , (1.36)

in the LDA it is assumed that the system locally appears as an homogeneous electron

gas. For the latter We split ǫxc ([n] ; r) as composed of

ǫhomxc (n) = ǫhomx (n) + ǫhomc (n) , (1.37)

with ǫhomx (n) bare exchange and ǫhomc (n) correlation energy density. While ǫhomx (n)

is an analytic function of n [6]

ǫhomx (n) = −3

4

[
3n

π

]1/3

, (1.38)

the correlation part can be calculated approximately using Many–Body perturba-

tion theory [7] or via quantum Monte Carlo methods [8]. The first method gives

an analytic function of n while the results from numerical Monte Carlo has been

parametrized by, e.g., Perdew and Zunger [9].
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1.3 The Zero Temperature Green’s function ap-

proach

In the last section I have introduced a theoretical framework to describe a fully

interacting system in terms of a free particles system.

Although these Kohn–Sham (KS) particles appear as fictitious quantities in the

mathematical approach, they have allowed a successful starting point in the descrip-

tion of experimental photoemission data, as well as optical spectra [10]. Nevertheless

the residual discrepancies between theory and experiment are due to the approx-

imate inclusion of correlation effects and to the fact that DFT is a ground state

theory.

A proper way of calculating single–particle excitation energies or quasi–particle

energies is provided by the Green’s functions technique. These functions describe

the single–particle evolution governed by the full many body Hamiltonian. For this

reason Green’s functions include all correlation effects.

At zero temperature the one–particle Green’s function is defined as

G(k; t− t′) = −i〈Ψ0 | T̂{ck(t)c†k(t′)} | Ψ0〉, (1.39)

where | Ψ0〉 is the interacting ground state of the many-body system. As we do not

know the exact eigenstates of the Hamiltonian, we write H = H0 + V , where H0

is the unperturbed part, and V is the interaction. We can solve exactly H0, so we

know its eigenstates. For simplicity we label these eigenstates with the wave vector

k only. Although band indices are not considered their inclusion is straightforward.

In Eq. (1.39) ck(t) and c†k(t) are the operators in the Heisenberg picture which

annihilate (create) at time t an electron on the state k. A generic operator in the

Heisenberg picture is defined as

O(t) = eitHOe−itH , (1.40)

while the wavefunction is independent of time. In Eq. (1.39) T̂ is the time–ordering

operator which orders c and c† so that time decreases from left to right. For the two

possible time orderings the Green’s function reads

G(k; t− t′) =







−i 〈Ψ0 | ck(t)c†k(t′) | Ψ0〉, if t > t′

i 〈Ψ0 | c†k(t′)ck(t) | Ψ0〉, if t′ > t
. (1.41)

An interchange of the position of two fermion operators causes a change of sign. The

physical interpretation of the Green’s function for t > t′ is the probability amplitude
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that an electron created on state k at time t′ propagates to time t in the state k.

For t′ > t instead, it is the probability amplitude that a hole created on state k

at time t propagates to time t′ in the state k. Since k is not usually eigenstates of

H, the particle in the state k gets scattered, shifted in energy, etc., during the time

interval t − t′. Thus by measuring at a later time t how much amplitude is left in

the state k, one can get information about the electron excitation. Similarly in the

t′ > t time ordering an electron is destroyed from the ground state at time t. This

destruction creates a vacancy, called a hole, and the hole can interact and scatter in

the interval t′ − t.

We want to convert the Green’s function from the Heisenberg representation to

the interaction representation, in which both the wavefunctions and the operators

are time dependent. In order to do that we introduce an adiabatic “switching on”

of the interaction

H = H0 + e−ǫ|t|V, (1.42)

in such a way a relationship between Ψ0 at t=0 and the ground state of H0, Φ0, can

be established:

| Ψ0(0)〉 = S(0,−∞) | Φ0〉. (1.43)

It means that in the past (t = −∞) the ground state of the system was the unper-

turbed ground state Φ0. The S matrix, brings the wavefunction adiabatically up to

the present, at t=0. The result is a wavefunction, eigenstate of H and containing

the effects of the interaction V.

Next we change the operators in the interaction picture:

ck(t) = eitHe−itH0 ĉk(t)e
itH0e−itH = U †(t) ĉk(t)U(t)

= S(0, t) ĉk(t)S(t, 0), (1.44)

where

ĉk(t) = eitH0ck(t)e
−itH0 . (1.45)

An analogous expression can be evaluated for the creation operator ĉ†k(t). Using

these definitions and invoking the S matrix properties, We get to the final expression

for Green’s function :

G(k, t− t′) =
−i〈Φ0 | T̂

{

ĉk(t)ĉ
†
k(t

′)S(∞,−∞)
}

| Φ0〉
〈Φ0 | S(∞,−∞) | Φ0〉

. (1.46)

The operator S(∞,−∞) contains an arbitrary number of operators which act in

the three time intervals (−∞, t′), (t′, t) and (t,∞). The T̂ operator orders these

13



operators in such a way all the time arguments decrease moving from left to right.

When the interaction V = 0, the S matrix is the unity and G, Eq. (1.46) reduces to

the unperturbed Green’s function or free propagator

G(0)(k, t− t′) = −i〈Φ0 | T̂
{

ĉk(t)ĉ
†
k(t

′)
}

| Φ0〉. (1.47)

In this case, the probability amplitude to find the particle in the state k at time t

(or t′) is given by

G(0)(k, t− t′) =







−i θ(ǫk − ǫF )e
iǫk(t−t′), if t > t′

i θ(ǫF − ǫk)e
−iǫk(t−t′), if t′ > t

, (1.48)

which is the well known expression for the time evolution of a free electron.

We now want to explicitly evaluate the perturbed Green’s function (Eq. (1.46)),

inserting the expansion of the S matrix in powers of V̂

S(∞,−∞) = 1 +

∞∑

n=1

(−i)n
n!

∫ ∞

−∞

dt′
∫ ∞

−∞

dt1...

∫ ∞

−∞

dtnT̂
{

V̂ (t1)V̂ (t2)...V̂ (tn)
}

,

(1.49)

which contains time ordered products of the interaction V̂ .

By expanding the electron–electron interaction V̂ in the basis of the H0 eigen-

states we get

V̂ (t) =
1

2

∑

k1,k2,q

4πe2

q2
ĉ†k1+q(t)ĉ

†
k2+q(t)ĉk2

(t)ĉk1
(t). (1.50)

The calculation of the nth order Green’s function requires the evaluation of time

ordered brackets like

〈T̂
{

ĉk(t)V̂ (t1)V̂ (t2)...V̂ (tn)ĉk(t
′)
}

〉. (1.51)

Each nth order term yields n! contributions corresponding to all possible time or-

derings. Nevertheless many contributions vanish. For example

〈T̂
{

ĉα(t)ĉ
†
β(t

′)
}

〉, (1.52)

equals zero unless α = β, while

〈T̂
{

ĉα(t)ĉ
†
β(t

′)ĉγ(t)ĉ
†
δ(t

′)
}

〉, (1.53)

equals zero unless α = β and γ = δ or unless α = δ and β = λ. More generally the

Wick’s theorem [6] is the instrument to take care of the time ordering in a simple

way. It expands a generic T–ordered product, Eq. (1.51), as a sum of completely
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contracted products of operators weighted by a factor phase (−1)P . As a the single

particle Green’s function is defined as a contraction of two operators

〈T̂
{

ĉk(t)ĉ
†
k(t

′)
}

〉 ≡ iG(0)(k; t− t′), (1.54)

a completely contracted products of operators is such that all pairs of creation–

annihilation operators have been contracted to form Green’s functions . The number

of permutation of the c and c† operators needed to reach the final ordering defines

the phase factor (−1)P .

A few simple rules should be kept in mind when making the contractions. When

two operators occur at the same time, the destruction operator always goes to the

right, and the term is just the number operator which is independent of time. When

instead two operators have different time arguments, we conventionally put the

creation operator to the right (see Eq. 1.54), thus obtaining the unperturbed Green’s

function iG(0)(k; t− t′).

We now consider the n=1 term in the S matrix expansion in Eq. (1.49), G(1)

G(1)(k; t− t′) = −i
∫ ∞

−∞

dt1
〈Φ0 | T̂

{

ĉk(t)V̂ (t1)ĉ
†
k′(t′)

}

| Φ0〉
〈Φ0 | S(∞,−∞) | Φ0〉

. (1.55)

In this case the T̂–product produces six possible fully contracted contributions. After

having applied Wick’s theorem we turn each contraction into either G(0) functions

or number operators.

Feynman introduced the idea of representing the terms we get from the evaluation

of the Green’s function by drawings. The idea of Feynman’s diagrams is to associate

a line to each single particle Green’s function corresponding to a contraction in the

T̂–product. A more detailed introduction to Feynman diagrams can be found, for

example, in [6].

The diagrams are extremely useful to provide an insight into the physical process

that these terms represent. These diagrams can be drawn both for the time depen-

dent Green’s function G(0)(k; t − t′) as well as for the Fourier transformed Green’s

function G(0)(k;ω). The diagrams obtained for the n=1 expansion of Green’s func-

tion are depicted in Fig. 1.1.
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Figure 1.1: The six diagrams originated by the expansion of the perturbed Green’s function at

the first order in the electron–electron interaction.

The non connected diagrams (a and b) are cancelled out by the normalization

factor appearing at the denominator of Eq. (1.55). They provide, in fact, just a

constant which multiplies the contribution coming from the connected parts. Dia-

grams c), e) are equivalent to d), f) respectively, as they differ only in the variables

labeling. But these are just the integration variables that can be interchanged.

The link between the nth order Green’s function and the Feynman’s diagram can

be performed following some general rules:

• Draw all topologically distinct connected diagrams with n interaction lines and

2n+1 directed Green’s function .

• Each line represents a Green’s function , G(0)(k, t− t′), running from t′ to t.

• Label each line with a variable.

• Impose momentum conservation to each vertex.

• Each wavy line represents an unretarded Coulomb interaction.

• Integrate internal variables over all intermediate times.

• Multiply by an overall sign (−1)F where F is the number of Fermion loops.

• Assign a factor (i)n to each nth order term.
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• Green’s function with equal time arguments should be interpreted asG(k, t, t+)

where t+ is infinitesimally ahead of t.

Taking the Fourier transform with respect to the time variable we get Green’s

function as a function of the energy:

G(k;ω) =

∫ ∞

−∞

d t eiω(t−t′)G(k; t− t′). (1.56)

In the case of the unperturbed Green’s function the time integral can be analyt-

ically performed to yield

G(0)(k;ω) =
θ(k− kF )

ω − ǫk + iδ
+

θ(kF − k)

ω − ǫk − iδ
. (1.57)

The free propagator has poles at energies ω = ǫk ∓ iδ, where ǫk is the energy of the

particle added (or removed) to (from) the system depending on the sign of its imagi-

nary part. In order to deal with well defined integrals, the free propagator (Eq. 1.48)

is multiplied by the exponential e−δ(t−t′) (where δ is a positive infinitesimal).

We consider the 1st order Green’s function introduced above, whose diagram-

matic expansion is depicted in Fig. 1.1. Translating diagrams c), d), e) and f) into

functions using the rules introduced above we get

iG(1)(k; t− t′) =

∫ ∞

−∞

dt1
[
iG(0)(k, t− t1)

]
(−i)Σ(k, t1 − t1)

[
iG(0)(k, t1 − t′)

]
.

(1.58)

Σ(k, t1 − t1) represents a time–independent “effective potential” which the par-

ticle in the state k feels because of its interaction with all the other particles in the

system. This ’effective potential’ represents, at the 1st order, the Hartree–Fock (HF)

approximation, which is the lowest order approximation for the self-energy.

The full expansion of the propagator involves the evaluation of high–orders T̂–

products which produce a growing variety of diagrams. The series is usually eval-

uated approximately by selecting the most important types of terms and summing

them to infinity. In the HF approximation the partial sum of diagrams is performed

taking into account only c), d), e) and f) diagrams. The HF approximation neglects

correlations, which means that it neglects the rearrangement of the other parti-

cles which “follow” the movement of the bare particle. The correlation would have

the effect, for example, of “shielding” the interaction between quasi–particles. The

proper evaluation of the screened interaction proceeds by the inclusion of polariza-

tion diagrams and it introduces a frequency dependent self-energy.
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By using the diagrammatic analysis of the single particle Green’s function ex-

pansion it is possible to derive a close and exact expression for the propagator

iG(k; t− t′) = iG(0)(k; t− t′) +

=

∫ ∞

−∞

∫ ∞

−∞

dt1 dt2
[
iG(0)(k, t− t2)

]
(−i)Σ(k, t2 − t1)

[
iG(0)(k, t1 − t′)

]
, (1.59)

which is known as Dyson’s equation. The Fourier transform of the series expansion

allows to write it in an algebraic form

G(k, ω) = G(0)(k, ω) +G(0)(k, ω)Σ(k, ω)G(k, ω). (1.60)

In the diagrammatic representation Dyson’s equation acquires the shape depicted

in Fig. 1.2 where by the short notation Σ is meant all the proper (irreducible) self-

energy parts.

Σ

Figure 1.2: Diagrammatic representation of the Dyson’s equation.

1.4 The Finite Temperature Green’s function ap-

proach

As I discussed in the preface, most experiments are carried out at finite temperature.

Consequently I need to extend the zero temperature formalism described in the

previous section to the finite temperature regime. A many body system at finite

temperature is defined as a statistical average over all its excited levels. Therefore

the ground state average used to calculate the T = 0K propagator (Eq. (1.39)),

must be replaced by an average over a grand canonical ensemble,

GT (k, t− t′) = −i T r ρ T̂{ck(t)c
†
k(t

′)}
Z

(1.61)

where ρ = e−β(H−µN) is the grand distribution function, µ is the chemical potential

i.e. the energy required to remove one particle from the system. N is the number

of particles, β = 1/kT (k is the Boltzmann factor), and Z = tr{ρ} is the grand

partition function, T is the temperature of the system and H = H0 + V , as in the

T = 0K case.
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We now convert the Green’s function (Eq. (1.61)) from the Heisenberg represen-

tation to the interaction one, using the S matrix and its properties

GT (k, t− t′) = − 1

Z
Tr
{

ρ S(t) ĉk(t)S(t, t
′) ĉ†k(t

′)S(t′)
}

. (1.62)

The perturbation V enters in e±iHt, which can be expanded using the S matrix.

Notice that H also appears in the thermodynamic weighting factor e−βH . If on one

hand S(t) satisfies the Schrödinger equation

∂S(t)

∂t
= HS(t), (1.63)

on the other ρ is the solution of the Bloch equation

∂ρ

∂β
= −(H − µN)ρ, (1.64)

as can be verified by differentiating ρ = e−β(H−µN). This analogy suggests that the

grand distribution function should be also expanded in powers of the interaction as

it was done for the S matrix. In order to treat both S(t) and ρ in just only one S

matrix expansion in terms of V , the trick is to treat t and β as the real and the

imaginary parts of a complex variable. Time is treated as a complex temperature,

rotating the time argument in the complex plane

it → τ, τ ∈ ℜ, (1.65)

τ has the time dimension. The imaginary time formalism is particularly useful

when we want to perform perturbation theory as it introduces the finite temperature

Feynman diagrams. This formalism leads us directly to physical results. Matsubara

Green’s function are, in fact, retarded correlation functions, that can be physically

connected to measurable quantities.

Definition of the Matsubara Green’s function

The imaginary time Green’s Function, also called Matsubara Green’s function, is

defined in the following way

G(k, τ2, τ1) = − Tr ρ T̂{ck(τ2)c†k(τ1)}
Z

, (1.66)

where the time ordering operator T̂ orders operators according to the history, older

times are arranged on the right. The i factor of Eq. (1.61) is dropped to agree with
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the convention in [6]. Analogously for real time we can define an imaginary time

Heisenberg picture,

O(τ) = eτ(H−µN)Oe−τ(H−µN). (1.67)

Comparing Eq. (1.67) with the T = 0K counterpart (Eq. (1.40)) we can summarize

that in the finite temperature formalism

• it is replaced by a real time τ ,

• H is substituted with → H̄ = H − µN .

thus we can build up a finite temperature theory based on the Bloch equation in

the same way the zero temperature theory was based on the Schrödinger equation.

In particular it turns out that if these replacements are made in G, the resulting

G can be expanded in a perturbation series which is nearly identical to the zero

temperature case. Despite the introduction of an imaginary time, it is easy to get

physical information out of G. This is because the only effect of the H → H − µN

replacement, is to shift the single particle energies by µ, since

H0 − µN =
∑

k

(ǫk − µ)c†kck.

Starting from Eq. (1.66) we now analyze the imaginary time Green’s function

properties. First, G is a function of the time difference. It can be easily inferred for

τ2 > τ1, using the theorem that the trace is unchanged by a cyclic variation of the

operators,

G(k; τ2, τ1) = − 1

Z
tr
[

ρeτ2H̄cke
−τ2H̄eτ1H̄c†ke

−τ1H̄
]

= − 1

Z
tr
[

ρeτ2H̄e−τ1H̄cke
−τ2H̄eτ1H̄c†k

]

= − 1

Z
tr
[

ρe(τ2−τ1)H̄cke
−(τ2−τ1)H̄c†k

]

= G(k; τ2 − τ1), (1.68)

and likewise for τ2 < τ1. It enables us to drop one of the time variables since it is

not unnecessary.

Second, the imaginary time Green’s Function is a function of τ with domain

−β < τ < β, τ = τ2 − τ1. (1.69)

This is the interval over which G converges. This can be easily seen starting from

Eq. (1.66) and considering first the case τ > 0,

G(k, τ) = − 1

Z
tr ρ ck(τ)c

†
k(0) = − 1

Z

∑

i

〈Ψi | e−βH̄eτH̄cke
−τH̄c†k(0) | Ψi〉. (1.70)
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Now inserting a complete set
∑

j | Ψj〉〈Ψj | and defining Ēi = Ei − µNi we have

G(k, τ) = − 1

Z

∑

i,j

e−(β−τ)Ēi〈Ψi | ck | Ψj〉e−τĒj〈Ψj | c†k | Ψi〉. (1.71)

The sum converges if the exponents are negative. Since Ēi, Ēj can be arbitrarily

large positive quantities, the exponents τ and β− τ must be positive. It means that

0 < τ < β. Analogously when τ < 0, the condition −β < τ < 0 follows.

The imaginary time propagator satisfies quasi–periodic boundary conditions.

Applying the condition tr(AB) = tr(BA) on Eq. (1.66) when −β < τ < 0 we

get:

G(k, τ) =
1

Z
tr ρ c†k(0) ck(τ)

=
1

Z
tr ck(τ) ρ c

†
k(0)

=
1

Z
tr e−βH̄ eβH̄ck(τ)e

−βH̄

︸ ︷︷ ︸

=ck(τ+β)

c†k(0)

= −G(k, τ + β), (1.72)

and for 0 < τ < β we get

G(k, τ) = −G(k, τ − β). (1.73)

Fourier transform of the Matsubara Green’s function

We previously observed that G(k, τ) is defined over the interval −β < τ < β. Ac-

cording to the theory of Fourier transformations, the Fourier expansion of a function

defined over this interval is

G(k, ωn) ≡
1

2

∫ β

−β

dτ eiωnτG(k, τ), (1.74)

where

ωn =
πn

β
, n = 0, ± 1, ± 2, ... .

Now we introduce a function Gper(k, τ) defined to be equal to G(k, τ) on the interval

(−β, β) and then repeated on (β, 3β), (3β, 5β), ..., (−3β,−β), ...

Gper(k, τ) =
1

β

+∞∑

n=−∞

e−iωnτG(k, ωn). (1.75)

This trick eliminates the difficulty of defining the Fourier transform of G(k, τ) on

(k, ω) space. In order to do that G(k, τ) is assumed to be defined over the whole

interval −∞ < τ <∞.
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In Eq. (1.74) a further simplification can be achieved by dividing the integral into

its negative and positive regions, then applying quasi–periodic boundary conditions

(Eq. (1.73)),

G(k, ωn) =
1

2

∫ β

0

dτ eiωnτG(k, τ) + 1

2

∫ 0

−β

dτ eiωnτG(k, τ)

=
1

2

∫ β

0

dτ eiωnτG(k, τ) + 1

2
e−iωnβ

∫ β

0

dτ eiωnτ G(k, τ − β)
︸ ︷︷ ︸

−G(k,τ)

=
1

2
(1− e−iωnβ)

∫ β

0

dτ eiωnτG(k, τ).

(1.76)

G(k, ωn) vanishes when the factor (1 − e−iωnβ) is equal to zero. It happens for

ωn = nπ
β
, whenever n is even. As a consequence the Fourier transform satisfies the

following expression

G(k, ωn) =

∫ β

0

dτ eiωnτG(k, τ), (1.77)

with ωn as Matsubara frequencies

ωn =
(2n+ 1)π

β
, n = 0, ± 1, ± 2, ... . (1.78)

Note that the temperature is explicitly included in the ωn frequencies through β.

TheMatsubara Green’s function for non interacting electrons

The Matsubara Green’s functions can be easily evaluated in the case of a non-

interacting system of particles. The Hamiltonian and its eigenstates are

H0 =
∑

k

ǫkc
†
kck, | Φi〉 =| ni

1, n
i
2, ..., n

i
k, ...〉. (1.79)

Using Eq. (1.66) and the definition of the statistical factors f+
k , f

−
k given in the

Appendix A.5, the expression for the free propagator is given by

G(0)(k, τ − τ ′) =







− f+
k e(ǫk−µ)(τ−τ ′), if τ > τ ′

f−
k e−(ǫk−µ)(τ−τ ′), if τ ′ > τ

, (1.80)

Comparing this expression with the free propagator at zero temperature (Eq. 1.48),

we observe that

• statistical factors appear instead of the θ–functions θ(ǫk − ǫF ) and θ(ǫF − ǫk),
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• energies are shifted by µ,

• the it factor is replaced by τ .

Once G(0) is periodically repeated by Eq. (1.75), the Fourier transform is obtained

substituting Eq. (1.80) in Eq. (1.77), obtaining

G(0)(k, ωn) =
1

iωn − ǫk + µ
. (1.81)

Because of the complex energy iωn appearing in the denominator G(0)(k, ωn) and

G(k, ωn) are also called ’imaginary frequency propagators’. The temperature is still

contained in this expression but now only in the imaginary frequency. I will show

later how the occupation factors explicitly appear in the expressions when diagrams

and correlation functions are actually evaluated.

Dyson’s equation

The Matsubara Green’s functions are evaluated by using the same Feynman diagram

technique that was introduced in Sec. 1.3 in the case of zero temperature. Feynman

diagrams rules are slightly modified to account for complex times and frequencies.

The new definition of G through the Eq. (1.66) can be expanded in a perturbation

series, equal to that one for G in the T = 0K, by following some simple rules

• Associate a Green’s function G(0)(k, ωn) to each internal electron line.

• Associate Vq to each internal coulomb line.

• Conserve momentum and complex frequency at each vertex. Keep in mind

that fermion frequencies are odd integers (2n + 1)π/β and boson frequencies

are even integers 2nπ/β. Their oddness and evenness will be maintained in

the energy conservation.

• Sum over all internal variables.

• Multiply the expression by

(−1)m+F

(νβ)m
, (1.82)

where F is the number of closed fermion loops. The integer m is the order of

the diagram, as defined in Sec. 1.3.
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A remarkable property of the finite temperature formalism is that the structure of

the diagrams does not change compared to the T = 0K case. The Dyson’s equation,

for example, has the same form

G(k, ωn) =
1

iωn − ǫk + µ− Σ(k, ωn)
. (1.83)

Similarly the equation of motion for higher orders Green’s functions .

1.4.1 The free electron polarizability

In this paragraph the polarizability of free electrons at finite temperature will be

evaluated. It is a simple example showing how the principle of the imaginary time

formalism works. The Feynman diagram of the free polarizability is drawn in Fig. 1.3

k, ωnk + q

ωn + ωi

≡ Π0(q, ωi)

Figure 1.3: Polarizability diagram of non–interacting electrons.

By using the diagrammatic rules it is straightforward to show that Π0(q, ωi) is

given by the convolution of free imaginary Green’s functions on the frequency axis

Π0(q, ωi) = −2

∫
dk

(2π)3
1

β

+∞∑

n=−∞

G(0)(k, ωn)G(0)(k+ q, ωn + ωi)

= −2

∫
dk

(2π)3
1

β

+∞∑

n=−∞

1

iωn − ǫk + µ
· 1

iωn + iωi − ǫk+q + µ
. (1.84)

Usually, the use of Matsubara Green’s functions leads to the appearance of sums

over Matsubara frequencies, like in Eq. (1.84). The trick to evaluate those sums is

to convert them into integrals and to apply the residuals theory. In order to do that,

we just need a function having poles on the imaginary axis at frequencies iωn. That

function turns out to be the well known Fermi function distribution

f(ω) =
1

eβω + 1
, (1.85)

with poles at the frequencies

ω = i
(2n+ 1)π

β
= iωn, n = 0, ± 1, ± 2, ... . (1.86)
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The residue at one of these frequencies is, indeed

Res [f(ω)]|ω=iωn
= lim

ω→iωn

(ω − iωn)f(ω) = − 1

β
. (1.87)

We consider now a contour C surrounding one of these poles. According to the

theory of analytic functions we have that
∮

C

dω F (ω)f(ω) = −2πi

β
F (iωn), (1.88)

where F (ω) is a function without poles on the imaginary axis.

If the contour C is extended in order to define a region which encloses all poles

laying on the imaginary axis (Fig. 1.4) where F (ω) is analytic, we can write

∮

C

dωF (ω)f(ω) = −2πi

β

+∞∑

n=−∞

F (iωn). (1.89)

C
′

C

ǫk − µ

−iωi + ǫk+q − µ

iωn

Figure 1.4: The contour used to perform the Matsubara sum for a function with known poles on

the imaginary axis, iωn.

If we take as F (iωn) the summand appearing in Eq. (1.84), the function F (ω)

will be

F (ω) =
1

ω − ǫk + µ
· 1

ω + iωi − ǫk+q + µ
. (1.90)

Consider now an extended contour covering the entire complex plane C′ : Reiθ,

where R → ∞, see Fig. 1.4. This contour would give us the contributions coming

from poles of f(ω), Eq. (1.86), and from poles of F (ω): ω = ǫk − µ and ω = ǫk+q −
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µ − iωi. Furthermore the contour integral itself gives zero because the integrand

goes to zero exponentially as ω ∈ C′. Therefore

∮

C′

dωF (ω)f(ω) = 0

=
2πi

−β
+∞∑

n=−∞

F (iωn) +

+ 2πi
∑

Residues of F (ω)f(ω)
∣
∣
∣
ω=“poles of F (ω)”

. (1.91)

This means that

1

β

+∞∑

n=−∞

F (iωn) =
∑

Residues of F (ω)f(ω)
∣
∣
∣
ω=“poles of F (ω)”

=

[
f(ǫk − µ)

ǫk + iωi − ǫk+q

+
f(ǫk+q − µ− iωi)

ǫk+q − iωi − ǫk

]

. (1.92)

Note that ωn +ωi = (n+ i)π
β
, with n+ i odd. Therefore ωi = iπ

β
, with index i even.

As a consequence

f(ǫk+q − µ− iωi) = f(ǫk+q − µ). (1.93)

Putting together Eq. (1.92) and Eq. (1.84) we have

Π0(q, ωi) = −2

∫
dk

(2π)3

[
f(ǫk − µ)

ǫk + iωi − ǫk+q

+
f(ǫk+q − µ)

ǫk+q − iωi − ǫk

]

. (1.94)

Now we add and subtract fk+qfk (using the simplified notation fk = f(ǫk − µ))

Π0(q, ωi) = 2

∫
dk

(2π)3

[
fk+q(1− fk)− fk(1− fk+q)

iωi + ǫk − ǫk+q

]

. (1.95)

Let’s change k + q → −k in the first term of the sum in the square brackets. This

substitution implies ǫ−k = ǫk and that f−k = fk, so we get

Π0(q, ωi) = 2

∫
dk

(2π)3
fk(1− fk+q)

[
1

iωi + ǫk+q − ǫk
− 1

iωi + ǫk − ǫk+q

]

. (1.96)

This is the ’imaginary frequency pair bubble’.

Since the experiments are done at real frequencies, we need to perform an analytic

continuation [11] in order to calculate theoretical physical quantities to compare with

finite–temperature experiments. In order to move on the real axis we need to replace

iωi → ω + iδ, (1.97)
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in the first term in the square brackets of Eq. (1.96), with δ an infinitesimal positive

quantity. Similarly we need to replace

iωi → ω − iδ, (1.98)

in the second term in the square brackets of Eq. (1.96). The result is a finite tem-

perature polarization function written on the real axis, ΠT
0 (q, ω)

ΠT
0 (q, ω) = f+(ω)Π0(q, ω + iδ) + f−(ω)Π0(q, ω − iδ). (1.99)

In the limit of T → 0 we should find the expression of T = 0K pair bubble. That’s

just what happens

ΠT→0
0 (q, ω) = 2

∫

ǫk<µ,
ǫk+q>µ

dk

(2π)3
· θ(ω)

[
1

ω − ǫk + ǫk+q + iδ
− 1

ω + ǫk − ǫk+q + iδ

]

+

+ θ(−ω)
[

1

ω − ǫk + ǫk+q − iδ
− 1

ω + ǫk − ǫk+q − iδ

]

. (1.100)

Comparing the real and the imaginary part of the above expression we can conclude

that Eq. (1.100) is equivalently re–written in the form

ΠT→0
0 (q, ω) = 2

∫

ǫk<µ,
ǫk+q>µ

dk

(2π)3

[
1

ω − ǫk + ǫk+q − iδ
− 1

ω + ǫk − ǫk+q + iδ

]

, (1.101)

having the same real and imaginary parts as Eq. (1.100).

1.4.2 The GW approximation

The lowest order self-energy in the screened interaction W is the GW approximation.

In this approximation one plasmon (the quanta of W) is virtually scattered. The

diagram representing the GW self-energy is shown in Fig. 1.5. In this paragraph I

will explicitly write the band indexes.

nk, ωin
′

,k− q

ωi − ωn

nk, ωi

W (q, ωn)

Figure 1.5: The GW self-energy diagram.
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By using the standard diagrammatic rules [6] we can define the proper self-energy

to be

Σnk(ωi) = −
∫

dq

(2π)3

∑

n′

∑

G1G2

ρnn′(k,q,G1)ρ
∗
nn′(k,q,G2)

1

β

+∞∑

n=−∞

G(0)
n′ (k− q, ωi − ωn)WG1G2

(q, ωn). (1.102)

In Eq. (1.102) we have introduced several quantities. ρnn′(k,q,G) are the scattering

amplitudes defined as

ρnn′(k,q,G) =

∫

drφ∗
nk(r)e

i(q+G)·rφn′k−q(r), (1.103)

with G a reciprocal space vector. The screened interaction W is defined in terms of

the dielectric function ǫ−1(q, ωn)

Ŵ (q, ωn) = v̂qǫ̂
−1(q, ωn), (1.104)

with

ǫ−1
G1G2

(q, ωn) =

∫

dr

∫

dr′ e−i(q+G1)·rei(q+G2)·r′ǫ−1(rr′, ωn). (1.105)

The dielectric function is the key quantity of the GW approximation. It is indeed

assumed that, in contrast to the bare interaction, W is much weaker. Consequently

only the finite order in the expansion of the self-energy in W is retained. We also

introduce the spectral representation of ǫ−1 defined as

ǫ−1
G1G2

(q, ωn) = δG1,G2
+

1

π

∫

dE ΓG1G2
(q, E)

[
1

iωn + E
− 1

iωn − E

]

, (1.106)

where

ΓG1G2
(q, E) = −1

π
ǫ−1,δ
G1,G2

(q, E)θ(E), (1.107)

is the ΓG1G2
definition in the T = 0K limit.

The two terms appearing in ǫ−1 allows to split the self-energy in exchange and

correlation terms

Σnk(ωi) = ΣX
nk + ΣC

nk(ωi). (1.108)

In order to do that we first note that the screened interaction acquires the form

WG1G2
(q, ωn) = vq(G1)δG1G2

+

+

∫

dE ΓG1G2
(q, E)

[
1

iωn − E
− 1

iωn + E

]
4π

|q+G1||q+G2|
, (1.109)
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thanks to spectral representation of ǫ−1.

If we plug Eq. (1.109) into Eq. (1.102) we have to evaluate the following sum

+∞∑

n=−∞

1

iωi − iωn − ǫn′k−q + µ
·
[

1

iωn + E
− 1

iωn − E

]

. (1.110)

We define the function

F (ω) =
1

iωi − ω − ǫn′k−q + µ
·
[

1

ω + E
− 1

ω − E

]

, (1.111)

recognizing F (iωn) as the summand in Eq. (1.110).

By following the same procedure outlined in Sec. 1.4.1, we convert the sum into

an integral along the contour C′ shown in Fig. 1.6. C′ edges a region on the complex

plane in which poles both of F (ω) and B(ω) fall. B(ω) = (eβω − 1)−1 is the Bose

function distribution having poles at the frequencies

ω = i
2nπ

β
= iωn, n = 0, ± 1, ± 2, ... . (1.112)

Applying the residuals theorem, the contour integral can be evaluated as follows

∮

C′

dωF (ω)B(ω)

︸ ︷︷ ︸

I

= 2πi
∑

Residues ofF (ω)B(ω)
∣
∣
∣
ω=“poles of F (ω)”

+

+

∮

C

dωF (ω)B(ω)

︸ ︷︷ ︸

J

, (1.113)

where poles of F (ω) are ω = ±E and ω = iωi − ǫn′k−q + µ. J is the integral

evaluated over the contour C enclosing all poles of the Bose function distribution.

The residuals theorem leads to the result for the integral J

J = 2πi
1

β

+∞∑

n=−∞

F (iωn). (1.114)
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C
′

C

−E E

Figure 1.6: The contour on the complex plane used to integrate the GW electronic self-energy.

If we consider now a contour C′ : Reiθ covering the entire complex plane (R →
∞), the contour integral I is doomed to vanish. The integrand, indeed, goes to zero

exponentially as ω ∈ C′. Therefore an explicit expression for the Matsubara sum

can be set in terms of a more accessible sum of residues of the integrand F (ω)B(ω)

− 1

β

+∞∑

n=−∞

F (iωn) = Res [F (ω)B(ω)]|ω=±E + Res [F (ω)B(ω)]|ω=iωi−ǫn′k−q+µ .

(1.115)

The residues evaluated at each pole are shown as follows

ω = E Res1 = − B(E)

iωi − E − ǫn′k−q + µ
, (1.116)

ω = −E Res2 =
B(−E)

iωi + E − ǫn′k−q + µ
, (1.117)

ω = iωi − ǫn′k−q + µ Res3 =
2EB(iωi − ǫn′k−q + µ)

[(iωi − ǫn′k−q + µ)2 − E2]
. (1.118)

Finally, we use the Bose function properties and the frequencies ωi as odd multiples

of π
β
to observe that B(−E) = −1 − B(E) and B(iωi − ǫn′k−q + µ) = −1 + fn′k−q.

These expressions can be readily exploited to re–write Eq. (1.115) in a more compact

form

1

β

+∞∑

n=−∞

F (iωn) =
B(E) + 1− fn′k−q

iωi − E − ǫn′k−q + µ
+

B(E) + fn′k−q

iωi + E − ǫn′k−q + µ
. (1.119)

Once the summation has been explicitly evaluated the final expression for ΣC
nk(ωi)
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is given by the following equation

ΣC
nk(ωi) =

∫
dq

(2π)3

∑

n′

∑

G1G2

ρnn′(k,q,G1)ρ
∗
nn′(k,q,G2)·

∫ ∞

−∞

dE ΓG1G2
(q, E)

4π

|q+G1||q+G2|

[
B(E) + 1− fn′k−q

iωi − E − ǫn′k−q + µ
+

+
B(E) + fn′k−q

iωi + E − ǫn′k−q + µ

]

. (1.120)

In order to move on the real axis we need to perform the analytic continuation,

which allows to re–write ΣC
nk(ωi) on the real axis

ΣC
nk(ω − iδ) =

∫
dq

(2π)3

∑

n′

∑

G1G2

ρnn′(k,q,G1)ρ
∗
nn′(k,q,G2)·

∫ ∞

∞

dE ΓG1G2
(q, E)

4π

|q+G1||q+G2|

[
B(E) + 1− fn′k−q

iωi −E − ǫn′k−q + µ
+

+
B(E) + fn′k−q

iωi + E − ǫn′k−q + µ

]

. (1.121)

The exchange self-energy, instead, follows the standard expression

ΣX
nk = −

∫
dq

(2π)3

∑

n′

∑

G

|ρnn′(k,q,G)|2fn′k−q

4π

|q+G|2 . (1.122)

By comparing Eq. (1.120) with its zero temperature limit we see that the Bose factor

B(E) dictates the occupation of the poles of W . For systems with a gap the lowest

energy excitation of W is at the gap. As the temperature corresponding to the

gap is huge (thousands of K), in these systems electrons live at zero temperature,

regardless of the external temperature.

In Chap. 3 I will show, instead, as the picture changes completely when the

scattering with phonons are included in the GW self-energy. The key point is

that phonons have energies three orders of magnitude smaller than plasmons, the

poles of W . Consequently the phonon temperature (the Debye temperature) is, in

general, of the same order of the experimental temperatures. Therefore, although

the temperature effect on the electron–electron scattering can be neglected, this is

not true for the electron–phonon scattering.
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Chapter 2

Phonons: beyond the rigid ions

approximation

Many crucial phenomena in modern solid-state physics are deeply linked to the

theory of the lattice vibrations. A wide range of physical properties depends on

the lattice-dynamics: for example specific heats, thermal expansion and heat con-

duction. On the other side resistivity of metals, superconductivity and thermal

dependence of optical spectra are related to the electron-phonon interaction. More-

over, vibrational spectroscopy is a very important tool for the characterization of

materials. Vibrational frequencies are measured mainly using infrared and Raman

spectroscopy, as well as in neutron-diffraction spectra.

As it will be clear in the following the screening of the atoms built-up by electrons

plays an essential role in the devise of an accurate theory of lattice vibrations. Only

by taking into account the mutual effects of the electronic correlation and atomic

vibrations it is possible to be predictive and accurate.

A systematic study of the lattice dynamics in several systems was then per-

formed since 1970’s [1, 2]; a large number of ab-initio calculations based on the

linear response (LR) theory of lattice vibrations followed the increasing success of

density-functional theory (DFT) [3, 4]. LR and DFT are naturally merged fusion

in Density Functional Perturbation Theory (DFPT), a method to conjugate DFT

and lattice dynamics in the LR regime. The availability of efficient numerical codes

and the state-of-the-art tools used in theoretical condensed-matter physics is such

that nowadays the lattice dynamics of specific materials can be obtained using ab-

initio QM techniques starting from the chemical composition of the material. In this

way it is possible to obtain accurate phonon dispersions on a fine grid of wave vec-

tors covering the Brillouin Zone (BZ), which can be directly compared with neutron
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diffraction data, and from which several physical properties (heat capacities, thermal

expansion coefficient, temperature dependence of the band gap) can be calculated.

The purpose of the present chapter is to illustrate the key concepts of DFPT

(Sec. 2.1). I will then apply DFPT to the trans-polyacetylene (Sec. 2.2) and polyethy-

lene (Sec. 2.3) obtaining phonon dispersion curves. In Sec. 2.4 I will motivate the

reason to discard the acoustic modes responsible for bending of the chain. I will

conclude this chapter with a first simplified approach to the electronic instabilities

induced by the atomic motion. By using a Monte Carlo algorithm (Sec. 2.5) I will

show how electrons are strongly influenced by the atomic motion.

2.1 Density Functional Perturbation Theory

The Born-Oppenheimer approximation is widely used and most of the ab-initio

calculations are performed assuming nuclei frozen in their equilibrium positions.

The equilibrium geometry is determined by the condition that the forces acting on

all nuclei vanish:

FI ≡ −∂E({R})
∂RI

= 0, (2.1)

where E({R}) is the ground state energy of the Hamiltonian of a system of N

interacting electrons moving in the field of fixed nuclei with coordinates {R}.
The computation of the first and the second derivative of the Born Oppenheimer

surface are accomplished using the Hellmann-Feynman theorem [5, 6]. This states

that if the Hamiltonian Hλ depends on a parameter λ the first derivative of the

eigenvalues of Hλ, with respect to the parameter λ, is given by the expectation

value of the derivative of Hλ, on its ground state wavefunction | Ψλ〉:
∂Eλ

∂λ
= 〈Ψλ | ∂Hλ

∂λ
| Ψλ〉. (2.2)

In the BO approximation the parameter λ represents the nuclear coordinates of the

Ith nucleus RI . The forces on the nucleus are evaluated in the electronic ground

state | Ψ (r,R)〉 of the Hamiltonian HBO(R):

FI = −∂E({R})
∂RI

= −〈Ψ (r,R) | ∂HBO({R})
∂RI

| Ψ (r,R)〉. (2.3)

The dependence of HBO(R) on the nuclear coordinates is through the electron-

nucleus and the nucleus-nucleus interaction. The Hellmann-Feynman theorem states

in this case that:

FI = −
∫

drnR(r)
∂VR(r)

∂RI
− ∂EN ({R})

∂RI
, (2.4)
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where nR(r) is the electron charge density for the nuclear configuration {R}.
For a system near its equilibrium geometry, the harmonic approximation holds

and the nuclear Hamiltonian

H = −
∑

I

~
2

2MI

∂2

∂R2
I

+ E({R}), (2.5)

reduces to the Hamiltonian of a system of independent harmonic oscillators, called

normal modes. Normal mode frequencies, ω, and displacement patterns, uαI for the

αth Cartesian component of the Ith atom are determined by the secular equation:

∑

J,β

(Cαβ
IJ −MIω

2δIJδαβ)uβJ = 0, (2.6)

where Cαβ
IJ is the matrix of the interatomic force constants (IFC’s):

Cαβ
IJ ≡ ∂2E({R})

∂RI,α∂RJ,β
= − ∂F α

I

∂RJ , β
. (2.7)

The vibrational frequencies are linked to the Hessian of the Born Oppenheimer

surface rescaled by the square root of the masses product:

det

∣
∣
∣
∣

1√
MIMJ

∂2E({R})
∂RI∂RJ

− ω2

∣
∣
∣
∣
= 0. (2.8)

Now the evaluation of the Hessian of the Born Oppenheimer surface can be easily

done by evaluating the derivative of Eq. (2.4) with respect to RJ :

∂2E(R)

∂RI∂RJ

=

∫

dr
∂nR(r)

∂RJ

∂VR(r)

∂RI

+

∫

drnR(r)
∂2VR(r)

∂RI∂RJ

+
∂2EN (R)

∂RI∂RJ

. (2.9)

IFC’s can be calculated as finite differences of Hellmann-Feynman forces for

small finite displacements of atoms around the equilibrium positions. This is the

frozen phonon technique often used to calculate IFC’s in solid state physics. The

evaluation of the IFC’s matrix needs indeed the density and its linear response to a

nuclear geometry distortion. Within DFT not only the ground density but also the

electron density linear response can be obtained. The following procedure is known

as density functional perturbation theory (DFPT).

The electron-density response appearing in Eq. (2.9) can be evaluated linearizing

the equation for the density with respect to derivatives of KS orbitals

∆nR(r) = 4ℜ
N/2
∑

n=1

ψ∗
m∆ψm. (2.10)
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Since the external potential is a real function, each KS wavefunction is degenerate

to its complex conjugate. The variation of ψm is obtained from the linearization of

the Kohn-Sham equation with respect to the derivatives of the density

(Hscf − ǫn) | ∆ψn〉 = −(∆Vscf −∆ǫn) | ψn〉, (2.11)

where Hscf is the unperturbed Hamiltonian

Hscf = − ~
2

2m

∂2

∂r2
+ Vscf(r), (2.12)

and

∂ǫn
∂RI

= 〈φn | ∂Vscf (r)
∂RI

| φn〉, (2.13)

is the first-order derivative of the KS eigenvalue.

The Kohn-Sham equations define a self-consistent potential including the Hartree,

the exchange-correlation and the ionic potentials

Vscf(r) = VR(r) + VH(r) + Vxc(r). (2.14)

The first order derivative of Vscf reads

∆Vscf(r) = ∆VR(r) + e2
∫

dr′
∆nR(r

′)

|r− r′| +
dvxc(n)

dn

∣
∣
∣
∣
n=n(r)

∆nR(r). (2.15)

∆Vscf represents the change of the self-consistent potential due to a rearrangement

of the electronic density. In the case of phonon calculation the change in n(r) reflects

the screening of the ionic potential.

Eqs. (2.10), (2.11) and (2.15) constitute a set of linear equations to be solved

self-consistently, analogously to the KS equations in the unperturbed case Eq. (1.29–

1.30). In this case the self consistency is explicit in the second member of Eq. (2.11)

as it depends in fact on the solution of the linear system itself. Moreover all equations

that compose the DFPT scheme are coupled to each other because of the dependence

of ∆n(r) on all ∆ψn. The first order correction to ψn is expressed by the sum over

all the eigenstates of HSCF

∆ψn(r) =

N/2
∑

nocc=1

∑

m6=n

ψm(r)
〈ψm | ∆Vscf | ψn〉

ǫn − ǫm
. (2.16)

If Eq. (2.16) is used to calculate the electron charge-density linear response we get,

from Eq. (2.10)

∆n(r) = 4

N/2
∑

nocc=1

∑

m6=n

ψ∗
n(r)ψm(r)

〈ψm | ∆Vscf | ψn〉
ǫn − ǫm

, (2.17)
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where products of occupied states cancel each other. As a consequence, the contribu-

tion to the electron-density response comes from a sum over empty states. Eq. (2.17)

shows that the electron density responds to a perturbation exciting virtual empty

states.

The theory of lattice dynamics can be equivalently formulated in terms of the

dielectric matrix ǫ−1(r, r′) which links the perturbation of the external potential to

the total potential experienced by a test charge

∆Vtest(r) =

∫

dr′ ǫ−1(r, r′)∆VR(r
′). (2.18)

∆n(r) can also be expressed in terms of electron polarizability χ(r, r′), as, in the

linear response regime,

∆n(r) =

∫

dr′ χ(r, r′)∆VR(r
′). (2.19)

χ(r, r′) and ǫ−1(r, r′) are linked together by the relation

ǫ−1(r, r′) = δ(r− r′) +

∫

dr
′′ e2

|r− r
′′ |χ(r

′′

, r′). (2.20)

The static approximation to the screening of the self-consistent potential is reli-

able when the plasma frequency of the system is greater then the typical phononic

frequencies. Lazzeri and Mauri [7] studied and explained the Kohn anomaly (KA)

appearing in the phonon dispersion of doped graphene within a time dependent per-

turbation theory. Only by considering a phonon as a dynamical perturbation it is

possible to describe the KA. Even if the adiabatic BOA is considered valid in most

of materials and it’s commonly used for phonon calculations, doped graphene is an

example where this approximation fails.

Within DFT the linear response of the charge distribution is related to the

variation of the self consistent field through the independent electron polarizability

∆n(r) =

∫

dr′ χ0(r, r
′)∆Vscf(r

′). (2.21)

Combining Eq. (2.19) and Eq. (2.21) we get a matrix equation for χ

χ(r, r′) = χ0(r, r
′) +

∫

dr1

∫

dr2 χ0(r, r1)K(r1, r2)χ(r2, r
′). (2.22)

This is the Time Dependent Density Functional Theory (TDDFT) equation for the

response function related to the Kohn-Sham response function χ0(r, r
′). The kernel

K(r1, r2) is defined as

K(r1, r2) = vH(r1, r2) + fxc(r1, r2), (2.23)
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where fxc is the static exchange-correlation kernel

fxc(r1, r2) =
δvxc [n(r1)]

δn(r2)
. (2.24)

2.2 Trans-Polyacetylene

Figure 2.1: Segment of the trans-polyacetylene chain (left figure) and the two possible atomic

configurations corresponding to the distorted chain (right figure). Both configurations have the

same energy.

As mentioned above, one of the two systems studied in this work is trans-

polyacetylene, the simplest conjugated polymer.

Polyacetylene is a linear polymer. Since carbon electronic structure is 1s22s22p2,

each atom forms four nearest-neighbour bonds. Three of the four carbon valence

electrons are in sp2 hybridized orbitals; two of the σ-type bonds connect neighbour-

ing carbons along the one-dimensional (1D) backbone, while the third forms a bond

with the hydrogen side group. The remaining valence electron has the symmetry

of a pz orbital with its charge density lobes perpendicular to the plane defined by

the other three bonds. In terms of an energy-band description, the σ-bonds form

completely filled bands, while the π bond leads to the partially filled energy band

responsible for the important electronic properties.

If all the bond lengths were equal, pure trans-polyacetylene would be a quasi-1D

metal with a half filled band. Such a system is unstable with respect to a dimeriza-

tion distortion, the Peierls instability [8], which induce adjacent C − H groups to

move toward each other forming alternated short and double bonds. In this way the

energy of the system is lowered. Clearly one could interchange the double and the

single bonds without changing the ground state total energy. Since there are two

lowest-energy states, A and B (see Fig. 2.1), having two distinct bonding structures
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but the same energy, trans-polyacetylene is termed as a “degenerate ground state”

system.

2.2.1 The ground state and electrons

The ground state wavefunctions and the phonon frequencies of all studied systems

have been performed using Quantum Espresso [9] (Q/E). Q/E is an integrated suite

of computer codes for electronic-structure and phonons calculations [3], implement-

ing Density-Functional Theory (see Sec. 1.2) and Density-Functional Perturbation

Theory (see Sec. 2.1) in a plane-wave basis set. The exchange-correlation energy and

potential are taken from Ref. [10]. For the description of the electron ion interaction

instead, a scheme proposed by Von Barth and Car has been used [11].

The planar structure of trans-polyacetylene (trans-PA) is sketched in Fig. 2.2

(left panel) together with the lattice constant in the direction of the polymer axis

and the bonding alternation between carbon atoms. That geometry has been taken

from Ref. [12].

The isolated chain can be simulated in an orthorhombic cell with primitive lattice

vectors a, b, c, whose lengths are 4.643, 25, 25 a.u. respectively (see right panel

Fig. 2.2). The unit cell contains 4 atoms, i.e. 2 C −H groups.

I performed convergence tests to find the most accurate kinetic energy cutoff

(Ecut) and volume to describe the ground state. Ecut was varied from 30Ry to 60Ry

in steps of 5Ry. The total energy and the DFT electronic gap converge respectively

to -24.93 eV and 0.883 eV, at Ecut equals to 40Ry. In order to reduce the number of

plane waves, I also checked the optimal vacuum size by reducing both sides b and

c of the simulation cell. Convergence tests involving total energy and the electronic

gap, lead us to conclude that a kinetic energy cutoff of 40Ry, with primitive cell

vectors 4.643, 15, 15 a.u. can be used.

Since the phonon frequencies are almost independent on the unit cell volume, I

fixed it to have a=4.643 a.u., b=15 a.u., c=15 a.u. . Then I looked at the phonon

frequencies at the Γ point, i.e. at the wavevector q = (0, 0, 0), both at Ecut = 30Ry

and Ecut = 40Ry.

The Q/E code performs 3·(#atoms) linear response calculations, one per atomic

displacement. As the unit cell is made up of 4 atoms, the number of phononic

branches is 12.

Increasing the kinetic energy cutoff, optical frequencies approach to the cor-

responding observed values in the infrared and Raman spectra [13, 14, 15] (see

Tab. 2.1) even if the Debye frequency is still too large.
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Figure 2.2: The trans-polyacetylene monomer geometry (left panel). The single and double bond

alternation is a typical feature of conjugated polymers. Simulation cell (right panel). The bond

alternation imposes the lattice constant a to be on the x̂ direction. The other two, b and c are

chosen large enough in order to simulate an isolated chain.

Optical Modes [cm−1]

Experimental freq.a 3013 2990 1457 1294 1170 1066 1012 884

LDA 3304 3289 1587 1253 1120 1055 910 834

(Ecut = 40Ry)

LDA 3502 3487 1764 1273 1091 982 814 764

(Ecut = 30Ry)

Table 2.1: Comparison between the experimental and calculated optical phonons frequencies of

a trans-polyacetylene chain at Γ point. aReferences [13, 14, 15].

The four lowest frequencies (the acoustic ones) I obtained at the Γ point with

Ecut = 30Ry are all negative, in the range −430 cm−1 ÷ 40 cm−1, instead of being

zero due to the acoustic sum rule (ASR), i.e. the translational invariance and the

rotational invariance with respect to the polymer axis.

Unlikely in approximated calculations the ASR is violated. In plane waves calcu-

lations the most irreducible violation comes from the discreteness of the FFT grid,

as a consequence of the chosen Ecut . Indeed the same calculation performed with a

denser FFT grid (Ecut=40Ry) leads to a smaller range of energies spanned by the

acoustic frequencies: −320 cm−1÷ 60 cm−1. Frequencies, however, are partially still

negative which points to a real instability, i.e. atoms are not in the configuration

which minimizes the total energy.

To confirm the geometric instability, I first moved carbon atoms keeping fixed
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Figure 2.3: Calculated total energy versus C=C bond length. A parabolic fit shows that the

minimum is located at a C=C bond length equal to ∼ 2.58 a.u.

the monomer centre of mass. By changing the double bond length I obtain several

configurations whose total energy is computed by means of a ground state calcula-

tion. The total energy as a function of the double bond C = C length value is shown

in Fig. 2.3. The most striking result is that the total energy has a minimum when

carbon atoms are ∼ 2.58 a.u. far apart. In the experimental geometry instead the

double bond length is 2.53 a.u.; the corresponding total energy is that highlighted

by a small square in Fig. 2.3.

This means that the chosen geometric structure is not the equilibrium one and it

should be relaxed. Consequently I optimized the atomic positions (bond lengths and

bond angles) by means of a standard minimization algorithm, in an orthorhombic cell

(a=4.643 a.u., b=23 a.u., c=23 a.u.) and Ecut=40Ry. The new structure is sketched

in Fig. 2.4 and it corresponds to a total energy equal to -24.938 eV. The difference in

length between double and single bonds is an important structural parameter and

it was object of a long experimental debate. The double bond length I obtain turns

out to be very similar to that one observed in NMR experiment [16]. Fixing the

optimized monomer geometry, I calculated the lattice constant in the direction of

the polymer axis in order to get a C − C length equal to the experimental value

1.44 Å [16].

With the optimized geometry I finally calculated the electronic band structure,
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Figure 2.4: Calculated geometry of trans-polyacetylene, obtained by a minimization of the total

energy.
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Figure 2.5: Electronic Band Structure of trans-polyacetylene.

finding an electronic band gap of 0.6 eV, lower than in the previous geometry.

The translational symmetry of the polymer chain implies that the solutions of the

Scrödinger equation must be of the Bloch form, Ψ(k, r) = uk(r)e
ikx, where uk(r) is a

periodic function and k is the crystal momentum along the x direction. Periodicity

in reciprocal space implies that Ψ(k, r) = Ψ(k + G, r), where G is the reciprocal

lattice vector. The first BZ is defined by the region between −π
a
<= k <= π

a
. The

electronic band structure is shown in Fig. 2.5. The highest occupied state at X has

been shifted in order to have zero energy.
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Optical Modes [cm−1]

Experimental freq.a 3013 2990 1457 1294 1170 1066 1012 884

LDA 2911 2890 1552 1261 1176 1162 1037 923

(Ecut=40Ry)

LDA 3154 3136 1716 1312 1176 1114 984 867

(Ecut=30Ry)

Table 2.2: Comparison between the experimental and calculated optical phonons frequencies of a

trans-polyacetylene at Γ point for the relaxed geometry shown in Fig. 2.4.aReferences [13, 14, 15].

Acoustic Modes [cm−1]

LDA 215 50 33 −38

(Ecut=40 Ry)

LDA 98 39 27 −37

(Ecut=30 Ry)

Table 2.3: Calculated acoustic phonons frequencies of a trans-polyacetylene at Γ point for the

relaxed geometry shown in the Fig. 2.4.

2.2.2 Phonons

I performed DFPT calculations starting from the fully relaxed structure. I checked

again phonon frequencies at wavevector q = (0, 0, 0)

The effect of the relaxation is clearly decisive. The most impressive effect appears

in the four lowest acoustic frequencies, shown in Tab. 2.3. Then I used DFPT to

calculate the full phonon bands. In order to do that, it is convenient to calculate

IFC’s in real space. The calculation involves three steps:

1. a self consistent step calculation of the charge density and Kohn-Sham orbitals

for the unperturbed system.

2. the calculation of phonons and dynamical matrices on a uniform grid of q-

vectors including Γ.

3. the transformation of the dynamical matrices from G-space to R-space. Once

the IFC’s in real space are available, one can calculate phonons frequencies at

any wavevector q, by just reconstructing the dynamical matrix. If the grid

is dense enough the reconstructed dynamical matrix will be accurate. This

procedure is a “Fourier interpolation” of the IFC’s.
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Phonon Frequencies [cm−1] at q=0.37(2π
a
, 0, 0)

Nq 257 312 440 612 866 937 1108 1254 1285 1532 2893 2905

10 245 309 436 603 873 935 1114 1250 1283 1527 2894 2906

26 267 318 449 612 873 934 1113 1256 1287 1541 2895 2906

40 263 317 448 611 872 934 1111 1255 1286 1540 2895 2906

Table 2.4: Calculated phonon frequencies on a q vector not included in the three grids. The

convergence on the grid is reached when the direct calculation and the Fourier interpolation give

the same result within an accuracy range.

Charge density and Kohn-Sham orbitals were calculated with a Ecut=40Ry. Phonons

and dynamical matrices were evaluated on one-dimensional grids along the x̂-axis of

the BZ containing Nq points. I used Nq=10, 26 and 40. To test the dependence of

the phonon frequencies on the grid, I calculated the phonon energies for a q-point

not contained in the uniform grids. In Tab. 2.4 the real phonon frequencies for this

q-point are compared with the ones obtained by Fourier interpolation of the IFC’s

calculated at Nq=10, 26 and 40. I see that from 6th to 12th branch the IFC’s inter-

polation is very accurate already using the smallest grid. By using denser grids a

good agreement is obtained also for the lower branches. The phonon bands along

the high symmetry line Γ-X are shown in Fig. 2.6.

As it can be seen in Fig. 2.6 there are two optical modes with frequencies around

∼ 3000 cm−1, ν7 and ν8. These can be attributed to the stretching of the C − H

bonds. The number of such modes corresponds to the number of hydrogen atoms.

These modes are also dispersionless indicating the independent nature of the vibra-

tions corresponding to different C −H bonds.

The other optical modes are located between 750 and 1500 cm−1. That one

around 1500 cm−1, (ν6) is assigned to the in-phase C = C stretch mode

The ν5 mode consists primarily of the CĈC deformation, and the C = C bond

stretching. The displacements of C atoms are nearly perpendicular to the chain

axis.

The ν4 mode is connected to the C−H in plane bending vibrations while ν7 and

ν8 are two of plane modes.

The first four modes at lower energies appearing in Fig. 2.6 are the acoustic

modes: three of them are related to the translational symmetry and one extra acous-

tic mode (not present in bulk systems) is related to the rotational invariance around
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Figure 2.6: Phonon dispersion curves of trans-polyacetylene calculated with 40 Ry as kinetic

cutoff energy.

the polymer axis. The translational mode along the polymer axis and the rotational

mode have a linear dispersion energy for q → 0. The last two modes, instead, have

an energy dispersion proportional to q2 and they correspond to translational modes

which are orthogonal to the polymer axis.

2.3 Polyethylene

Figure 2.7: A segment of the polyethylene chain.

In σ-bonded polymers, the C-atoms are sp3 hybridized, as in the polyethylene (PE)

structure shown in Fig. 2.7, and each C-atom has four bonds. In such non-conjugated

polymers, the electronic structure consists only of σ-bands. The large electron energy

band gaps in σ-bonded polymers makes these polymers electrically insulating, and

generally non-absorbing to visible light.
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rCC rCH θCCC θHCH

(Å) (Å) (◦) (◦)

Experimental 1.53 1.07 112 107.5

LDA 1.503 1.097 113.58 105.3

Table 2.5: Comparison between the experimental [17, 18] and calculated geometry (bond lengths

and angles) of a polyethylene chain.

2.3.1 Ground state, phonons and electrons

Unlike in the case polyacetylene, PE shows only slight differences among the different

geometries determined either by experiment or by theory. In my calculation I use

the structure measured using x-ray diffraction [17, 18] whose bond lengths and

angles are represented in Tab. 2.5. In addition I relaxed the atomic structure.

First I checked that the CC bond length effectively corresponds to the optimum

one by varying the distance between the two carbon atoms around the experimental

length, assumed to be the equilibrium one. To resolve such a small movements a

high cutoff is needed (Ecut=60Ry). The result is shown in Fig. 2.8.
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Figure 2.8: Calculated total energy versus C-C bond length of polyethylene.

Fitting this curve with a parabola, I found that the minimum of the energy

corresponds to a C − C bond length equal to 1.502 Å. The internal geometrical

structure of the isolated polymer chain thus fixes the repetition length of the crystal

unit cell, to be a = 2.51 Å.
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The electronic band structure and the phonon bands have been investigated

following the very same strategy outlined in the case of the trans-polyacetylene.

Analogous convergence tests were performed for the energy cutoff. While Ecut

is varied between 30Ry and 60Ry in steps of 5Ry the volume of the unit cell is

kept fixed. The unit cell is orthorhombic, centred in the origin of the axis with

dimensions a=4.75 a.u., b=20 a.u., c=20 a.u.. The integration over the BZ is done

with a uniform mesh of 10 points. I found that if Ecut = 40Ry the total energy

converges within an accuracy of 0.04 eV. At this cutoff the electronic gap is 6.57 eV

at Γ. It represents a converged value within a range of accuracy of 0.03 eV.

The same analysis has been carried out for the convergence on the sides b and c

of the unit cell, at Ecut=40 Ry. I found that if b and c equal 20 a.u. the total energy

converges within an accuracy range of 0.0002 eV. At that volume the electronic gap

is 6.57 eV at Γ. It represents a converged value within a range of accuracy of 0.07

eV.

The electronic and phononic band structures at 40 Ry are that shown in Figs. 2.9

and 2.10 respectively.

Figure 2.9: Electronic band structure of polyethylene.
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2.4 Acoustic phonons and the bending of poly-

mers

Long wavelength phonons play a delicate role in carbon based nanostructures. The

tendency to bend and to curl in graphite layers is well documented [19, 20, 21].

Molecular dynamics simulations [22], in fact, demonstrated that acoustic phonon

modes tend to close graphite sheets to form nanotubes. The relevant point is

that the energy barrier against the curvature is 0.3 eV . It means that already at

T ∼ 2 − 3000K such a barrier can be overcome by thermal fluctuations. This has

been confirmed by studying the vibrational spectra of graphene and looking for the

presence of a particular class of vibrational eigenmodes having a symmetry tending

to fold the flat sheet into a cylinder, as shown in Fig. 2.11.

The eigenmodes responsible for the bending are also present in polymers. Indeed,

the experimental growth of long straight polymer chains, turns out to be quite

difficult.

In the present context the tendency of the chain to bend induces uncontrollable

quasiparticle corrections that explode as the temperature is increased. As I consider

straight chains the acoustic phonons will be neglected.
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Figure 2.11: Snapshots of a molecular dynamics simulations of a graphite layer at T = 4000K.

The lower configuration is taken at about 4 ps after the upper one. From Ref. [22].

2.5 A random walker for atoms to reveal a huge

electronic instability

In the BOA the dynamic of atoms oscillating in their potential walls is mapped

into that of quantum harmonic oscillators. Each atom oscillates around its equi-

librium position and at the same time it is part of the collective oscillations, the

phonons. The ground state wavefunction of a three-dimensional harmonic oscillator

is a Gaussian function

Gs(~r) = Ne−C(~r), (2.25)

where N is a normalization factor and C(~r) is a generic conical function.

Performing a thermal average over all phonons it is possible to calculate the

atomic indetermination, as the square of the atomic displacements

σs
ij(T ) = 〈usiusj〉 =

∑

qλ

1

2NqλMsωqλ
~ǫ∗i (qλ/s)~ǫj(qλ/s)(2B(ωqλ) + 1). (2.26)

The indices i, j label the three directions x, y, z, while s labels the generic species.

The atomic indetermination is obtained summing over all phonons, labeled by q-

vector and the branch λ. σs
ij depends on the atom massMs, and it includes the scalar

product of the polarization vectors. Phonon frequencies and polarization vectors are

the eigenvalues and the eigenstates respectively of the Hessian operator defined by

Eq. (2.8). σs
ij is a function of temperature, through the Bose function distribution
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Trans-polyacetylene

Conical axis C H

C and H a.u. a.u.

x̂ 0.1 0.32

ŷ 0.07 0.21

ẑ 0.07 0.34

Polyethylene

Conical axis C H Conical axis

C a.u. a.u. H

x̂ 0.1 0.32 x̂

ŷ 0.08 0.21 −0.54ŷ + 0.84ẑ

ẑ 0.06 0.33 0.84ŷ + 0.53ẑ

Table 2.7: Atomic amplitudes ∆s
i obtained by diagonalization of the σs

ij (T=0) matrices.

B(ωqλ). Even if at T = 0K there are no phonons and the Bose function vanishes,

the atomic indetermination is different from zero. This is the zero point motion

effect, an exclusively quantum effect.

The diagonalization of the σs
ij matrix provides the axis of the conical function

C(x, y, z). Physically they represent the directions along which the atoms can be

maximally delocalized. Indeed if

σs
ijd

s
j = ∆s

id
s
i , (2.27)

∆s
i is the indetermination of the atomic species s along the direction defined by dsi .

The main ingredients I need to evaluate Eq. (2.26) can be obtained by a DFPT

calculation, as it was shown in Sec. 2.1. The results for trans-polyacetylene and

polyethylene are summarized in Tab. 2.7. Despite the conical axis are expected to

lie along arbitrary directions, I found that in the case of trans-polyacetylene they are

just along the polymer main axis, both for C and H. It means that σs
ij(0) is already

in a canonical form. The same happens to C in polyethylene, while the Gaussian

associated to H has one axis coinciding with the x̂ direction, while the other two

orthogonal axis are rotated with respect to ŷ axis of 32◦.

The different values between the C and the H atoms are obviously due to the

different masses. Particularly interesting is to compare these values with the typical

bond lengths (see left panel of Fig. 2.2 and Tab. 2.5) of trans-polyacetylene and

polyethylene. The relatively large values of ∆s
i point to a possible important ef-

fect of the atom indetermination on the electronic levels. As a consequence the

appropriate description of atoms is quantistic, where point atoms are replaced by a

three-dimensional Gaussian probability centered in the equilibrium positions

Gs(~r) =
1

(2π)
3

2Πi

√
σs
ii

e
− 1

2

(

∑

ij

rirj

σs
ij

)

. (2.28)

The key point now, is how to investigate the potential effect of the giant zero
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point motion effect on the electronic levels. I would like to have a first, qualitative

picture that links the quantum fluctuations of the atoms with the electronic levels.

The easiest way is to use the frozen-phonon approach. In this approach the atoms are

displaced of a small quantity and the corresponding electronic levels are calculated

by performing a self-consistent Kohn-Sham calculation.

To simulate the zero point motion effect I used a Gaussian random walk. I gen-

erated N=10000 Gaussian distributed atomic configurations moving atoms around

their equilibrium positions. The N configurations are generated by a Metropolis al-

gorithm. The starting point is the system with atoms in their equilibrium position,

whose geometry is shown in Fig 2.2 and Tab. 2.5. In this case the set of displacements

is {~u0} = 0.

As a first step the algorithm proposes a set of displacements {~u1} from the

equilibrium position. The suggested total displacement is then

D = {~u1}+ previously accepted. (2.29)

This proposal is “accepted” as the new configuration if a number r, randomly dis-

tributed in the [0, 1] interval satisfies

r < G({~u1}+ previously accepted)/G(previously accepted). (2.30)

When this condition is satisfied, {~u1} is accepted. If such a condition was not

satisfied instead, the displacement would be refused, the algorithm would retain the

current configuration at time step t − 1. The result is a sampling of the atomic

positions centered around the equilibrium one with variance ~u2s.

A single point energy calculation (wavefunctions and charge density are calcu-

lated for a particular arrangements of nuclei) has been performed for each atomic

configuration. The electronic structure is each time relaxed to a new configuration

dictated by the current atomic positions. For this reason movements are adiabatic.

A random-walker simulation is equivalent to consider only Γ-point movements, be-

cause a movement associated to a given atom is the same in all cells. Since each

atomic displacement is independent on the others belonging to the monomer, I am

considering decoupled and isolated harmonic oscillators. As the ground state wave-

function of an isolated harmonic oscillator is a Gaussian function the association of

a Gaussian probability to each atom is justified in this context.

The aim of this analysis is to check how much the KS energy of each electronic

state deviates with respect to the reference one, when the effect of zero point motion

is introduced by hand. With this approach I am actually overestimating the zero
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point motion effect. Besides the broadening of the electronic levels following the

atomic motions, I am also including a further broadening due to the fact that move-

ments are chaotic: atom are not moved, in fact, respecting the phonon symmetries.

I have also considered the case of a standard deviation set by hand at σ =

0.05a.u.. This “sharper” random walker is used to simulate the movements of the

carbon atoms, only.

Both in the normal and sharp random-walker I evaluated the spectral function, as

the probability that the KS energy of the electronic state nk is equal to an arbitrary

energy ω:

Ank(ω) =
1

N

N∑

i=1

δ(ω − ǫnk(i)), (2.31)

where the sum runs over all accepted atomic configurations. As a probability func-

tion it is obviously normalized to 1. Results for the first occupied band of trans-

polyacetylene are summarized in Fig. 2.12.

The first noteworthy observation is that in most of the cases the spectral func-

tions spread over a range of about 2 eV. It means that small atomic movements

around equilibrium positions produce great changes in the single particle electronic

energy. It is a first evidence for a strong coupling between electronic and atomic

degrees of freedom, even at T = 0K, when the only zero point motion effect is taken

into account.

When I associate a smaller indetermination to the atom, it is like if the electron

saw a more massive atom with respect to the classical picture of point atoms. I

can observe as a general trend that a sharper random walker produces distributions

more symmetrically distributed. In the sharp random walker, indeed, atoms are

strongly bounded to their equilibrium positions. In the standard random walker,

instead, the SF’s are, in general, non symmetric. I interpret this asymmetry as

due to the deep modification of the electronic levels. Indeed the atomic movements

seem to induce a severe rearrangement of the electronic levels that are represented

by mixed packets of levels referred to the original, un-displaced geometry. These

packets can be, in general, centered on a different energy that represents the most

probable energy spanned by the electron during the Gaussian oscillations.

In conclusion, this simplified simulation, has revealed a giant renormalization of

the electronic levels following the atomic motion. The purpose of the next chapter

is to ground these preliminary results on a more rigorous theoretical basis.
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Figure 2.12: Spectral functions of the first occupied band obtained after a random walker simu-

lation (red line) and after a sharper one (green line).
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Chapter 3

Polarons: ab–initio theories of

electron–phonon interaction

The Born–Oppenheimer approximation (BOA) and the consequent decoupling of

the atomic and electronic degrees of freedom, represents the basis for the majority

of the ab–initio calculations. As a consequence, in these standard approaches the

electronic and optical properties are calculated assuming the atoms frozen in their

crystallographic positions. As a matter of fact the coupling of the electronic states

with the lattice vibrations has been often undervalued. The most important aspect

is that little, or not, valid motivations to this approximation are provided. Instead,

even when T → 0, atomic quantum fluctuations appear. Only by a careful analysis

of the effects induced by the electron-phonon coupling it is possible to estimate the

impact of the frozen atom approximation.

Indeed, the measured temperature dependence of the energy bands at a constant

pressure derives partially from the renormalization of the band energies by electron-

phonon coupling (EPC) and partially from the thermal expansion. The observed

thermal shift of the electron energies in metals and semiconductors is typically larger

by a factor of 5 than can be accounted for by the thermal expansion alone. The

electron-phonon interaction besides being the largest effect is also the hardest one

to evaluate.

The theory of EPC has attracted a large interest since 1951 [1], when Fan devel-

oped the theory of this effect. He calculated the electronic self-energy in a simple

model (Debye phonons, parabolic bands and only evaluating the intraband terms)

by retaining terms up to the second order in the electron-phonon interaction . The

model yields a decreasing gap with increasing T, in agreement with the experiment

for Ge and Si [2],[3]. On the other hand Antoncik [4] and other authors [5] found a
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reasonable agreement with the experiments over quite a range of temperature, by

the only inclusion of the Debye-Waller correction.

It was believed for many years that Debye-Waller and Fan theories were equiv-

alent, i.e. either one or the other could be used. Instead in the 70’s and 80’s a new

awareness became widespread [6]. In the case of diamond–type semiconductors both

terms are needed. The inclusion of the solely Debye-Waller term overestimates the

variation of the energy gap with the temperature. When the Fan term is added the

agreement between theory and experiment improves.

The purpose of the present chapter is to review the second order adiabatic theory

which rigorously gives both the self-energy and the Debye-Waller corrections. The

condition of translational invariance is used to transform the Debye-Waller term in

a form closely related to the self-energy correction. It will be also evident that the

interband terms are by no means unimportant as instead was assumed for a long

time.

In Sec. 3.1 the Heine Allen Cardona approach to polarons is introduced, following

Refs. [7]. In Sec. 3.1.1 I will retrace some of the results that have been obtained using

this approach. In particular a first–principle study relied on the HAC technique has

been used [8] to pursue successfully the temperature–dependence of the optical

spectrum of Silicon in a full ab–initio manner. This study will be reviewed in

Sec. 3.1.2.

Sec. 3.2 focuses on the results I obtained when the HAC approach is applied to

trans-polyacetylene. I will provide and discuss the calculations for the temperature–

dependent energy shifts of the electronic states produced by the electron-phonon

interaction. In particular I will show how the HAC approach leads, in this case, to

pronounced and uncontrollable numerical instabilities, related to the large polaronic

corrections.

A further step will be to evaluate the electron–phonon self-energy (Sec. 3.3.1)

within the Many–Body Perturbation Theory framework. Moreover in the same

section I will show that the thermal shift of the electron energies within the many-

body approach, reduces to the static HAC approach in the on mass shell and the

adiabatic limits.

3.1 The Heine–Allen–Cardona approach

We consider a crystal constituted by atoms of different species. The generic atom

position is R
(0)
Is +uIs, with I the cell index and s the species. R

(0)
Is is the equilibrium
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position and uIs the corresponding displacement. As the displacements are usually

small, one can expand Hscf (Eq. (2.12)) in powers of uIs. The two leading terms in

the Taylor expansion are,

H1 =
∑

Is

uIs · ~∇IsVscf(r−R
(0)
Is ), (3.1)

H2 =
∑

Is
Js′

uIsuJs′ · ~∇Is
~∇Js′Vscf(r−R

(0)
Is ). (3.2)

Vscf is the Kohn–Sham potential defined by the Eq. (1.35), evaluated in the atomic

equilibrium positions (BOA), which form the crystal periodic potential. The solution

of the electronic Hamiltonian corresponding to Vscf , gives the Kohn–Sham states

| nk〉, and the band energies ǫnk, respectively eigenstates and eigenvalues of Hscf .

The adiabatic approximation implies that the time dependence of uIs is neglected

and treats uIs as a static operator. This makes possible to calculate the perturbed

electron energy Enk({uIs}) of the state | nk〉 in the presence of a configuration {uIs}
of static lattice displacements. To second order in uIs the result is

Enk({uIs}) = ǫnk + 〈nk | (H1 +H2) | nk〉+
∑

n′k′

′ |〈n′k′ | H1 | nk〉|2
ǫnk − ǫn′

k
′

, (3.3)

where the prime symbol in the summation indicates that the term n′k′ = nk is

omitted.

The corresponding change in energy of an electronic state | nk〉 of unperturbed
energy ǫnk is

∆Enk({uIs}) =
∑

αIs,
βJs′

{
1

2
〈nk | ∂2Vscf

∂Rα,Is∂Rβ,Js′
| nk〉 +

+
∑

n′k′

′ 1

∆nkn′k′

〈nk | ∂Vscf
∂Rα,Is

| n′k′〉〈n′k′ | ∂Vscf
∂Rβ,Js′

| nk〉
}

uα,Isuβ,Js′, (3.4)

where

∆nkn′k′ = ǫnk − ǫn′k′ . (3.5)

The first order correction from H1 is dropped, because the thermal average over

the ensemble of thermal displacements will cause 〈uIs〉 to vanish in the harmonic

approximation.

It must be observed that the terms in Eq. (3.4) correspond to Debye-Waller and

self-energy corrections, in order of appearance. The second correction is equivalent

to the Fan’s theory [1].
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The subscripts α, β, ... denote Cartesian components which are summed when

repeated.
∂Vscf

∂Rα,Is
is the change in the electron–lattice potential per unit displacement

of the atom Is in the α direction. It is self–consistently calculated for any variation

of the electronic charge accompanying an atomic displacement.

The first term of Eq. (3.4) arises from the second–order electron-phonon coupling,

treated within the first–order perturbation theory, while the second term is first–

order electron-phonon coupling, within the second–order perturbation theory.

We will now introduce the following short notation

∆Is
αβ(nk) ≡ 〈nk | ∇αIs,βIsVscf | nk〉, (3.6)

ΓIs
α (nkn′k′) ≡ 〈nk | ∇αIsVscf | n′k′〉, (3.7)

which allows to re–write Eq. (3.4) in a more compact and suitable form

∆Enk({uIs}) =
∑

αIs,
βJs′

1

2
∆Is

αβ(nk)uα,Isuβ,Is

︸ ︷︷ ︸

∆EDW
nk

+

+
∑

n′k′

′ 1

∆nkn′k′

ΓIs
α (nkn′k′)ΓJs′

β (n′k′nk)uα,Isuβ,Js′

︸ ︷︷ ︸

∆EFan
nk

. (3.8)

The definition given by Eq. (3.6) assumes the pseudo potential to be local: only

diagonal terms (s = s′) of the operator ∂2Vscf are considered. Such a condition is

fullfilled only if the Hamiltonian depends on the atomic positions only within a rigid

ions scheme. The non diagonal terms, in fact, would vanish in this case. Within

DFPT, instead, the variation of the ionic potential felt by electrons is screened by

the inverse of the dielectric function, which in turns depends implicitly on the atomic

positions.

Non–diagonal Debye-Waller contributions (NDDW) are in principle non zero, in

the general case. In extended systems the efficient screening weakens the implicit de-

pendence of Vscf on the atomic positions. The reason is that the plasmon oscillations

are not appreciably influenced by a tiny atomic rearrangement. P. Boulanger [9] has

shown that NDDW contributions play a crucial role in molecules, where the screen-

ing is poor. In this thesis I will study infinite 1D chains where plasmons can indeed

be excited. As a consequence I assume the electronic screening to be large enough

to reduce substantially the NDDW corrections. Therefore, in the following, NDDW

corrections will be neglected.

We now investigate the implication of the translational invariance by noticing

that if every atom is further displaced by a fixed amount uα, the energy must not
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change

∆Enk({uα,Is + uα}) = ∆Enk({uα,Is}). (3.9)

Then Eqs. (3.8) and (3.9) impose the following identity relating the matrix ele-

ments of ∂Vscf and ∂2Vscf appearing in Eq. (3.4)

0 =
∑

αIs,
βJs′

{
1

2
∆Is

αβ(nk)(uα,Is + uα)(uβ,Is + uβ) +

+
∑

n′k′

′ 1

∆nkn′k′

ΓIs
α (nkn′k′)ΓJs′

β (n′k′nk)(uα,Is + uα)(uβ,Js′ + uβ)

}

. (3.10)

Eq. (3.10) is equivalent to the acoustic sum rule of lattice dynamics [10] and it

guarantees that Eq. (3.8) vanishes as q → 0, if uα,Is represents a long–wavelength

acoustic phonon, as argued by Zeyher [11] and in Ref. [12].

From Eq. (3.10) it is possible to get two conditions, coming from the first and the

second order terms in uIs. The first order one allows to re–write the Debye-Waller

correction in a form similar to the self-energy correction.

Grouping terms with uα, and those with uβ, renaming β in α in the term multi-

plying uβ, and observing that ∆Is
αβ(nk) = ∆Is

βα(nk), the first order in uIs condition

can be re–written as

∆Is
αβ(nk) uβ,Is +

1

∆nkn′k′

[(
∑

Is

ΓIs
α (nkn′k′)

)

ΓJs′

β (n′k′nk)uβ,Js′

+ ΓIs
β (nkn′k′)

(
∑

Js′

ΓJs′

α (n′k′nk)

)

uβ,Is

]

= 0, (3.11)

where repeated indexes are summed. Eq. (3.11) allows to derive the ∆Is
αβ matrix

elements appearing in the Debye-Waller energy correction, in terms of the gradients

ΓIs
α . Both types of correction now appear to be of the second order in Vscf ; a result

which was not transparent at all in the original form (Eq. (3.4)). This close relation

was obscured by the fact that it involves different powers of Vscf .

The temperature dependent band energy corrections ∆Enk(T ) can be obtained

by performing a thermal average of Enk({uIs}) over the ensemble of displacements.

In order to do that, the factor 〈uα,Isuβ,Is〉 is evaluated resorting to the Fourier

transform of the atomic displacements in the phonon representation

uα,Is =
∑

qλ

(
1

2MsωqλNq

) 1

2

eiq·(RI+τs)ǫα(qλ/s)(b
†
−qλ + bqλ). (3.12)
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Ms is the mass of the sth atomic species, in the unit cell at the position τs, N is

the number of transferred momenta q, ǫα(qλ/s) are the polarization vectors, and

b†−qλ and bqλ are the bosonic creation and annihilation operators. Performing the

thermal average implies to evaluate 〈(b†−qλ + bqλ)(b
†
qλ + b−qλ)〉 in order to get the

matrix elements

〈uα,Isuβ,Is〉 =
∑

qλ

1

2MsωqλNq

ǫ∗α(qλ/s)ǫβ(qλ/s) (2B(ωqλ) + 1) , (3.13)

where B(ωqλ) is the Bose function distribution. The elements on the diagonal are

the atomic vibrational amplitudes (see Sec.2.5).

To get to the final result for the energy correction some further steps must be

taken. We can group the products between the matrix elements ΓIs
α (nkn′k′) and

the atomic displacements u∗α,Is appearing in Eq. (3.8), using Eq. (3.12)

∑

αIs Γ
Is
α (nkn′k′)uα,Is = (3.14)

∑

αIs〈nk | e−iq·RI∇αIsVscf | n′k′〉
∑

qλ

(
1

2MsωqλNq

) 1

2

e−iq·τsǫ∗α(qλ/s)(b
†
qλ + b−qλ).

By using the Bloch’s theorem we get

∑

k′

∑

αIs Γ
Is
α (nkn′k′)uα,Is = (3.15)

∑

αs〈nk | ∇αsVscf | n′,k+ q〉
∑

qλ

(
1

2MsωqλNq

) 1

2

e−iq·τsǫ∗α(qλ/s)(b
†
qλ + b−qλ).

At this point we can define

(

gqλn′nk

)∗

=
∑

αs

〈nk | ∇αsVscf | n′,k+ q〉
∑

qλ

(
1

2MsωqλNq

) 1

2

e−iq·τsǫ∗α(qλ/s).

(3.16)

The gqλn′nk factors describe the probability amplitude that an electron scatters from

k → k′ with the emission or the absorption of a phonon of transferred momentum

q and branch λ. These electron-phonon matrix elements can be obtained from

the first order derivative of the self–consistent potential Vscf defined by Eq. (2.14),

with respect to atomic displacements uα,Is for the s
th atom in lattice position RIs.

Moreover it is possible to further simplify the self-energy term by using completeness

relations involving polarization vectors.

By using a similar procedure to the one that leads to Eq. (3.15) we can work out

the Debye-Waller contribution to Eq. (3.8). This can be observed when the matrix

element ∆Is
αβ, gathered from the condition of translational invariance, Eq. (3.11), is
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inserted in Eq. (3.8). The ∆Is
αβ(nk)uα,Isuβ,Is factor can be simplified and written in

a more compact form when we define

Λqλ
nn′k = 2ℜ

[
∑

αβ

(
∑

s

〈nk | ∇αsVscf | n′k〉
)

·

·
(
∑

Is

〈n′k | ∇βIsVscf | nk〉ǫ
∗
α(qλ/s)ǫβ(qλ/s)

2MsωqλNq

)]

. (3.17)

Using Eq. (3.17) we get to the final expression for the thermal shift

∆Enk(T ) =
∑

qλ

1

Nq

∑

n′

[

| gqλn′nk |2

ǫnk − ǫn′k′

− 1

2

Λqλ
nn′k

ǫnk − ǫn′k

]

(2B(ωqλ) + 1) , (3.18)

where squared electron-phonon matrix elements appear together with a sum over

all energy bands weighted by their energy denominators. ∆Enk(T ) can be also

rewritten in terms of a generalized Eliashberg function g2Fnk(ω)

∆Enk(T ) =

∫

dωg2Fnk(ω)

[

B(ωqλ) +
1

2

]

, (3.19)

with B(ωqλ) = (eβω − 1)−1, being the Bose occupation function. The complex

g2Fnk(ω) function is defined by

g2Fnk(ω) =
∑

qλ

∂Enk

∂B(ωqλ)
δ(ω − ωqλ), (3.20)

where the sum is extended over all phonons {qλ}.
It is clear that self-energy and Debye-Waller terms will be similar in order of

magnitude. Both of them are cast in the form of interband transitions in Eq. (3.18).

Since several calculations showed that also Debye-Waller gives a large contribution,

the approximation introduced by Fan, of only considering the intraband terms in

self-energy, can no longer be justified.

Following the Heine–Allen–Cardona (HAC) formulation it is possible to calculate

the energy renormalization of state | nk〉 due to the electron-phonon interaction

using Eq. (3.18). When these shifts are evaluated for metals, or in general for systems

where the typical energy differences | ǫnk − ǫn′k+q | are comparable to the phonon

frequencies ωqλ, a correction to the Fan term appears

∆EFan
nk (T ) =

∑

n′q,λ

| gq,λn′nk |2

Nq

[
(2B(ωqλ) + 1)(ǫnk − ǫn′k+q)

(ǫnk − ǫn′k+q)2 − ωqλ
2

+

+
(1− 2fn′k+q)ωqλ

(ǫnk − ǫn′k+q)2 − ωqλ
2

]

. (3.21)

65



The Debye-Waller correction, instead, does not change. So finally we get

∆Enk(T ) = ∆EFan
nk (T ) +

1

2

Λq,λ
nn′k(2B(ωqλ) + 1)

ǫnk − ǫn′k

. (3.22)

It can be verified that in the ωqλ going to zero limit, Eq. (3.22) becomes the expres-

sion for the energy corrections seen in Eq. (3.18). As discussed in Sec. 3.3.1 Eq. (3.21)

can be obtained within the many-body perturbation theory scheme.

3.1.1 Polaronic Effects in semiconductors: bulks and nanos-

tructures

In this section I will review some applications of the HAC approach to the calcu-

lations of these properties in bulks like Ge, Si and Diamond, in nanostructures like

Carbon Nanotubes and a layered material, hexagonal–BN.

Germanium, Silicon and Diamond

The temperature dependence of the indirect gaps of Ge and Si has been known

for half a century [14]. In one of the seminal paper of Allen and Cardona [6] the

HAC approach has been applied to Silicon and Germanium. The corresponding

Figure 3.1: Temperature dependence of the thermal shift ∆Enk(T ) for few bands at k = 0 in

silicon and germanium. From Ref. [6].

T–dependence of the k = 0 states near the band gap is shown in Fig. 3.1. The

T → 0 limit of Fig. 3.1 highlights the zero point motion effect. The electronic gap

is reduced by the electron-phonon coupling even at T = 0K.
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Figure 3.2: Eliashberg function g2Fnk(ω) of Ge (left panel) and Si (right panel) for a valence

state at k = 0. From Ref. [6].

In this work Allen and Cardona also calculate the generalized Eliashberg func-

tion, shown in Fig. 3.2. From Fig.3.2 it is clear that the DW contribution is of the

same order of magnitude of the Fan term.

Figure 3.3: Optical gap of Diamond as a function of temperature. The dots are the experimental

values fitted by the solid line. The dashed line is the asymptotic behaviour at high temperatures

extracted from the fit. The extrapolation at T = 0K gives the unrenormalized band gap. The

difference between the intercepts with the vertical axis, gives the zero–point renormalization. From

Ref. [19].

In contrast to Si and Ge, diamond has a much larger Debye temperature (∼
1900K). Therefore electron-phonon corrections would be expected to be larger as

T → 0. The gap renormalization is estimated to be 370 meV, as shown in Fig. 3.3,

much larger than the corresponding values for Ge and Si (≃ 70meV ).
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Carbon Nanotubes

The first measurements of optical gap Eg in the semiconducting single wall carbon

nanotubes (SWNTs) started to be available after 10 years since their discovery.

Since experiments are performed at room temperature, the understanding of Eg(T )

is extremely important. Capaz et al. [15] calculated the optical gap of a large variety,

for diameter and chirality (n,m), of SWNTs. The meaning of the pair of indices

(n,m) is more evident in Fig. 3.4.

Figure 3.4: The (n,m) nanotube naming scheme can be thought of as a vector (Ch) in an

infinite graphene sheet that describes how to “roll up” the graphene sheet to make the nanotube.

T denotes the tube axis, and a1 and a2 are the unit vectors of graphene in real space.

The shift of the electronic eigenenergies due to static atomic displacements is

calculated using the HAC approach and the electron-phonon coupling has been

evaluated using the “frozen phonon” approach. Even though the energy shift prop-

erly takes into account the effect of the zero point motion, the authors plotted in

Fig. 3.5 the calculated values of ∆Eg(T ) = Eg(T )−Eg(0), which vanishes for T → 0,

up to T = 400K. As a consequence it is not possible to glean any idea about the

renormalization of the optical gap due to the zero point motion effect.

The general conclusion is that the temperature dependence of the band gap is

small if compared to bulk semiconductors. The most interesting thing to observe in

Fig. 3.5 is that in the case when ν = (n−m)mod 3 = 2 SWNTs the gap in general

exhibits a non–monotonic variation with temperature, positive for small T and

negative for larger T. Besides being observed in photoluminescence experiments [16],

these trends find an explanation in the analysis of different contributions to Eg(T )
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Figure 3.5: Calculated and fitted optical gap as function of temperature. Solid and dots lines

represent results for ν = 2 SWNTs. Open dots and dashed lines represents instead results for

ν = 1 SWNTs. From Ref. [15].

coming from the different phonon modes. The authors, in fact, plotted the electron-

phonon spectral function for the gap, g2F in Fig. 3.6. The plot is restricted to the

low–energy phonon branches (two upper panels), because they are the most relevant

in the considered temperature range 0 < T < 400K.

Figure 3.6: Dimensionless g2F (lower panel) and phonon spectra (upper panels) for ν = 1

SWNTs (left picture) and ν = 2 SWNTs (right picture). In both lower panels, the solid black line

is the total g2F and the dashed line is the contribution from the modes which deform the shape.

From Ref. [15].

In Fig. 3.6 the contribution given by the shape deformation modes (SDMs), which

deform the circular section of tubes to ellipses, triangles, squares etc., is highlighted
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in dashed lines (two lower panels). In ν = 1 SWNTs this contribution is large,

negative and dominates in all temperature range. In ν = 2 SWNTs instead, it is

small, positive and dominates in the temperature range T < 200K, as beyond the

other modes start being more important. However the global effect is appreciably

lower with respect to ν = 2 SWNTs and this explains the corresponding non–

monotonic gap variation with temperature noticed in ν = 2 SWNTs.

3.1.2 Finite temperature excitons

The HAC approach has been also extended to the description of the finite tem-

perature properties of excitons. These neutral, bosonic–like particles are created

by bound electron–hole pairs. Excitons are usually probed in photo absorption ex-

periments. The absorption spectra of bulk materials, surfaces, nanostructures and

even organic or biological molecules are usually described by the solution of the

Bethe–Salpeter (BS) equation [17] of the many-body perturbation theory. It rep-

resents a well established tool [18] to interpret absorption and photoluminescence

experiments, that are usually carried out at room temperature.

Absorption and emission lines at any temperature show an intrinsic width [19]

that reflects the finite lifetime of the excitonic states. The BS equation is actually

solved assuming atoms frozen in their crystallographic positions, so the effect of lat-

tice vibrations is neglected at all. As a consequence the excitonic states acquire an

infinite lifetime and they are completely insensitive to the temperature. The calcu-

lated absorption spectrum is then convoluted with an ad–hoc broadening function

to yield the best agreement with the experiments. Even in the T going to zero limit

in fact, atoms vibrate in order to satisfy the indetermination principle (zero–point

vibrations).

In the frozen atom (FA) approximation the BS equation, the excitonic states

| λFA〉 and the energies EFA
λ are eigenstates and eigenvalues of the Hamiltonian

HFA written in the electron (e) hole (h) basis [17]

HFA
ee′
hh′

= (Ee − Eh)δeh,e′h′ + (fe − fh)Ξee′
hh′
. (3.23)

Ee(h) and fe(h) are the quasielectron (hole) energies and occupations. Ξ is the Bethe–

Salpeter kernel, that is the sum of a direct and an exchange electron–hole (e–h)

scattering. An explicit expression for Ξee′
hh′

can be found, for example, in Ref. [18].

The absorption spectrum is given by the imaginary part of the dielectric function

ǫ2(ω) = −8π

V

∑

λ

| SFA
λ |2ℑ

[
(ω − EFA

λ + iη)−1
]
, (3.24)
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where SFA
λ are the excitonic optical strengths and η is a broadening parameter.

The smallest excitation energy in semiconductors, the gap energy, is usually much

larger than the typical thermal energy corresponding to the experimental temper-

atures. This justifies the fact that the quasiparticle (QP) energies Ee,h, obtained

within the GW approximation for the electronic self-energy, are assumed to be real

and independent on T. The Hamiltonian HFA is also independent on T and Hermi-

tian. As a consequence the excitonic states | λFA〉 will have an infinite lifetime and

the eigenenergies EFA
λ will be real. An ad–hoc broadening parameter η is introduced

in Eq. (3.24) just to mimic the experimental broadening.

In Ref. [8] the BS equation is solved in a fully ab–initio manner including the

coupling with lattice vibrations. In the finite temperature regime the QP energies

Ee,h acquire an explicit dependence on the temperature Ee,h(T ) = Ee,h +∆Ee,h(T ),

with ∆Ee,h(T ) = ∆Ee−ph
e,h (T )+∆ETE

e,h (T ). ∆E
TE
e,h (T ) is the thermal expansion (TE)

contribution while ∆Ee−ph
e,h (T ) represents the complex energy correction that arises

from the electron-phonon interaction. In Ref. [8] the electron-phonon interaction is

treated in the HAC approach. In particular the QP states acquire a finite lifetime

as shown in Ref. [20].

The temperature dependence of the QP states modifies Eq. (3.23). The BS

Hamiltonian turns, in fact, to be now a non–Hermitian operator

Hee′

hh′
(T ) = HFA

ee′
hh′

+ [∆Ee(T )−∆Eh(T )] δeh,e′h′ . (3.25)

The excitonic states are the solutions of the eigenvalue problem H(T ) | λ(T )〉 =

Eλ(T ) | λ(T )〉. The eigenstates | λ(T )〉 are linear combinations of e–h pairs: |
λ(T )〉 = ∑

e,hA
λ
e,h(T ) | eh〉, with Ae,h(T ) = 〈eh | λ〉. If we plug this expansion in

the definition of the excitonic energies Eλ(T ) = 〈λ(T ) | H | λ(T )〉, we get

Eλ(T ) = 〈λ(T ) | HFA | λ(T )〉+
∑

e,h

| Aλ
e,h(T ) |

2
[∆Ee(T )−∆Eh(T )] . (3.26)

Using Eq. (3.19) and neglecting the TE term, Eq. (3.26) yields

ℜ [∆Eλ(T )] =
[
〈λ(T ) | HFA | λ(T )〉 − 〈λFA | HFA | λFA〉

]
+

+

∫

dωℜ
[
g2Fλ(ω, T )

]
[

Nqλ +
1

2

]

, (3.27)

ℑ [Eλ(T )] =

∫

dωℑ
[
g2Fλ(ω, T )

]
[

Nqλ +
1

2

]

, (3.28)
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where ∆Eλ(T ) = Eλ(T )−EFA
λ and an exciton–phonon coupling function g2Fλ(ω, T ) =

∑

e,h | Aλ
e,h(T ) |

2
[g2Fe(ω)− g2Fh(ω)] has been introduced. Eq. (3.28) defines, in an

ab–initio manner, the non radiative excitonic lifetime that is infinite in the FA ap-

proximation.

The dielectric function now depends explicitly on T,

ǫ2(ω) = −8π

V

∑

λ

| Sλ(T ) |2ℑ
[
(ω − Eλ(T ))

−1
]
, (3.29)

and no damping parameter η is needed anymore.

When T → 0 the zero point motion effect causes the excitonic states to have a

finite lifetime.

The experimental optical spectra of Si, shown in Fig. 3.7, are dominated by two

excitonic peaks. As the temperature increases, the peaks move towards lower ener-

gies and the width, reflecting only the damping of the excitons due to the scattering

with phonons, increases with temperature. These results are well reproduced by the

Figure 3.7: Optical absorption of bulk Silicon for several temperatures. The experimental spec-

tra (circles) are compared with the BS equation (solid line) and with the independent particle

approximation. From Ref. [8].

finite temperature BS equation. The g2Fλ(ω), right panel of Fig. 3.7, is used to pin

down the phonon modes that contribute to the redshift of the peaks: the optical

phonons at 60 meV. As the temperature increases, the phonon population increases

and an analysis of the different contribution to Eq. (3.27) shows that the g2Fλ(ω)

integral is the dominant negative contribution. This is the incoherent contribution,

coming when electrons and holes interact separately with the lattice vibrations and

when | λ(T )〉 ≃| λFA〉. It happens in the case of Si because e–h pairs are weakly

bounded.

In Ref. [8] the author considers also a layered material, hexagonal–BN (h−BN).

h − BN is a wide gap insulator, therefore excitonic effects are expected to be en-

hanced by the layered structure. Moreover the phonon band structure of h−BN is
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well known [21] and it is characterized by the competition of in–plane and out–of–

plane modes.

In h − −BN instead the lattice vibrations participate actively in the exciton

build up. In fact the coupling induces bright to dark (and vice versa) transitions.

It happens when the first term of Eq. (3.27) is dominant. It represents the coherent

contribution that modifies the Aλ
eh components and vanishes when | λ(T )〉 =| λFA〉.

The thermal evolution of the excitonic energies and optical strengths | Sλ(T ) |2 for

the near gap excitons is shown in Fig. 3.8. The size of the circles is proportional

to | S(T ) |2 which strongly depends on temperature. The R1 and the B2 excitons

undergo a bright to dark (and vice versa) transition at room temperature. The

microscopical mechanism is a transfer of optical strength between energetically close

excitonic states.

Figure 3.8: Temperature dependence of the energies and oscillator strengths of the near–gap

bound (B) and resonant (R) excitons in h–BN. The sizes of the circles are proportional to the

excitonic optical strengths. From Ref. [8].

This example concludes the retracing of the works where finite temperature prop-

erties have been investigated within the HAC approach. In Sec. 3.3.1 the electron-

phonon interaction will be treated in the many-body framework.

3.2 Polymers in the Heine Allen Cardona approach

I first evaluated in trans-polyacetylene the ∆Enk given by Eq. (3.22), at T = 0K

on uniformly distributed one dimensional grids Nq 1 1 with Nq = 10, 26, 40 and 54.

The calculation proceeds as follows: first the variation of the self–consistent po-
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tential ∆Vscf is calculated on a given grid, then the electron-phonon coupling matrix

elements gq,λn′nk are evaluated on the same grid of k points but using a larger number

of bands. For any grid the second calculation has been repeated with an increas-

ing number of bands just to check the convergence. The results are summarized

in Figs. 3.9 and 3.10 at the Γ and X points, that are in common among all the

considered grids.

Figure 3.9: Calculated energy corrections at the Γ–point for different grids dimensions and

number of bands.

The corrected gap is shown instead in Fig. 3.11, where the reference DFT elec-

tronic gap is 0.6 eV.

The first conclusion is that no particular insight regarding the appropriate num-

ber of bands to use can be extracted from an analysis of Figs. 3.9, 3.10 and 3.11. In

general unexpected fluctuations at Γ, for the 5th band appear. The same happens for

the 4th, 5th and 6th band at X , as shown in Fig. 3.10. Fig. 3.11 shows how the band

gap varies with the numbers of bands. Even if the gap value appears to fluctuate, it

can be inferred from the global trend that the renormalized electronic gap decreases

with respect to the reference one, showing a sizable finite zero point motion effect.

The most puzzling and evident aspect of Figs. 3.9, 3.10 and 3.11 is the ∆Enk

oscillations with the number of bands and k–points. These oscillations are clearly

related to an instability of the HAC theory whose source could be, however, simply
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Figure 3.10: Calculated energy corrections at the X–point for different k grids and varying the

number of bands.

numerical. For this reason I further investigated the nature of above shown energy

oscillations performing the sum over q points appearing in Eq. (3.22) using a ran-

domly distributed three dimensional grid. So I generated 500 random q points. For

each q point phonons and electron-phonon matrix elements are calculated, using

the electronic density of a 10 1 1 k–point grid, and 45 empty bands.

The energy corrections and the corresponding unperturbed KS energies are

shown in Fig. 3.12. The oscillations of the energy corrections are, somehow, smaller.

However, the behaviour of some states is still unstable. The energy correction for

the state | n = 4, k3 = 0.2 (2π
a
, 0, 0)〉, for example, is about −0.5 eV . This value

converges when 40 bands are included in the sum. For other states the convergence

is much slower, as for the state | n = 4, k4 = 0.3(2π
a
, 0, 0)〉. In this case the energy

correction is −0.46 eV with 20 bands, then it fluctuates between −0.51 eV , −0.48 eV

and −0.37 eV when 30, 40 and 50 bands are included.

Although the numerical oscillations still appear, Fig. 3.12 clearly highlights that

the HAC corrections are huge, of the same order of magnitude of the electronic gap.

But are they also reliable?

The oscillations of the HAC energy corrections point to the fact that the self-

energy, indeed, must have a complex dependence on the bare electrons energy.

A direct approach to investigate the presence of complex structures in the HAC
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Figure 3.11: Renormalized electronic gap for different k grids and number of bands.

approach is to introduce, by hand, a frequency dependent energy correction

∆EFan
nk → ∆EFan

nk (ω) =
∑

n′q,λ

| gq,λn′nk |2

Nq

· 2B(ωqλ) + 1

ω − ǫn′k+q

, (3.30)

releasing the adiabatic approximation on which the HAC approach is based.

Eq. (3.30) can be formally obtained using the diagrammatic many-body pertur-

bation theory, as shown in the next section. We can now take into account the

frequency dependence of the HAC corrections by expanding up to the first order in

the derivative of ∆EFan
nk (ω) around the bare energy ǫnk

Enk = ǫnk +∆EFan
nk (ǫnk) +

∂∆EFan
nk (ω)

∂ω

∣
∣
∣
∣
ω=ǫnk

(Enk − ǫnk) (3.31)

= ǫnk + Znk∆E
Fan
nk (ǫnk),

where the renormalization factor, Znk reads

Znk =

[

1− ∂∆EFan
nk (ω)

∂ω

∣
∣
∣
∣
ω=ǫnk

]−1

. (3.32)

The “renormalized” particle with energy Enk, is otherwise named quasiparticle.

Physically, a quasiparticle state is viewed as the original non interacting state, but

surrounded by an “interaction cloud” [22], which is responsible for the renormaliza-

tion. The Znk factor describes the weight of the bare electron (Znk = 1) in the

quasiparticle.
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Figure 3.12: Calculated energy corrections as a function of the KS energy, using a random grid

of q–points and different numbers of empty bands. The generic state is labeled with kibj where i

is the ith k-vector ki =
(i−1)
10 (2π

a
, 0, 0) on a uniform grid 10×1×1 and j is the jth occupied band.

The basic condition of validity of Eq. (3.30), is that the higher order derivatives

must be small. In a many-body language it means that the bare energy must be

far from any intense pole of the self-energy, i.e. it should be in an energy region

where ℜΣFan
nk (ω) is almost flat. In these conditions the first derivative of ℜΣFan

nk (ω)

is generally small and the renormalization factor is positive and less than 1. These

boundary values are consistent with the physical meaning of electron charge, associ-

ated to the Znk factors within many-body perturbation theory. I will discuss more

extensively these factors in the next chapter.

The Znk factors calculated according to Eq. (3.32) indeed reveal pronounced

numerical instabilities, as shown in Tab. 3.1. Beside being negative in some cases (4th

band and 10th k–point), the Znk factors are often greater than one (6th band). This

is clearly unphysical. The numerical instabilities of the HAC energy corrections,

are therefore connected to the instability of the polaronic charges, Znk, when a

quasiparticle picture is adapted.

The interpretation of the puzzling values of the Znk factors requires a deeper

analysis of the real energy dependence of the Fan self-energy. In order to do that in

the following section I will review the many-body approach to the electron-phonon

interaction .
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Renormalization factors Znk

Bands k1 k2 k3 k4 k5 k6 . . . k10

4 1.60 1.45 0.64 1.38 2.07 1.81 . . . −.86
5 0.28 0.26 0.25 0.25 0.24 0.21 . . . 0.16

6 5.51 4.58 3.89 3.87 3.29 1.74 . . . 0.97

Table 3.1: Renormalization factors for different bands and k–points calculated on a uniform grid

60×1×1 and summing over a randomly distributed one dimensional grid of q points. The generic

k-vector is labeled with ki =
(i−1)
60 (2π

a
, 0, 0) on a uniform grid 60×1×1.

3.3 Beyond the HAC approach

The HAC approach represents a successful and predictive tool to study polaronic

effects in an ab–initio manner, as exemplified in the sections 3.1.1 and 3.1.2. Nev-

ertheless the HAC approach suffers of drastic limitations, mainly connected to the

adiabatic approximation, as I highlighted in the previous section. To disclose, and

cure, these limitations in the next section I will re–derive the HAC equations within

the more general MBPT. This non–adiabatic extension of the HAC approach will

be applied to polymers in the next chapter.

3.3.1 The many-body perspective: a non adiabatic approach

Within the many-body framework the electron-phonon interaction is obtained from a

perturbative calculation [12] of the electron self-energy at the second order in atomic

displacement uIs. The effect of the electron-phonon interaction is then broken up

into two contributions: the Fan [1] and the Debye-Waller term [4]. The corresponding

Feynman diagrams are shown in Fig. 3.13.

The Fan’s diagram can be compared to the self-energy diagram evaluated in

Sec. 1.4.2, where the screened interaction W is replaced by a phonon propagator of

wavevector q and branch λ. In the GW approximation only one phonon is assumed

to be virtually scattered. Applying the diagrammatic rules it is possible to define

the self-energy operator, recovering the expression originally evaluated by Fan [3].

The Fan’s contribution is obtained by a convolution of the electron and the

phonon Green’s function

ΣFan
nk (ωi) = − 1

β

1

Nq

∑

qλ

∑

n′

| gqλn′nk |2
+∞∑

j=−∞

D(0)(qλ, ωj)G(0)(k− q, ωi − ωj). (3.33)
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nk, ωin
′

,k− q
ωi − ωj

nk, ωi

q, λ

n,kn,k

q, λ

Figure 3.13: Electronic self-energy diagrams which are widely used to get the temperature

renormalization of the bands to second order in the displacement uIs. Fan (on the left) and the

Debye-Waller (on the right) terms.

Sums over Matsubara frequencies usually appear when Matsubara Green’s functions

are used. For the electronic propagator we will use the definition of Green’s function

provided by Eq. (1.81). The phonon propagator instead is [23]

D(0)(qλ, ωj) =

(
1

iωj − ωqλ

− 1

iωj + ωqλ

)

. (3.34)

It is important to note that the definition (3.34) implies a time–dependent displace-

ment operator.

Inserting Eqs. (1.81) and (3.34) in Eq. (3.33) we can evaluate the polaronic elec-

tron self-energy due to the scattering with phonons:

ΣFan
nk (ωi) = − 1

β

∑

n′ qλ

| gqλn′nk |2

Nq

+∞∑

j=−∞

(
1

iωj − ωqλ
− 1

iωj + ωqλ

)

·

· 1

iωi − iωj − ǫn′k−q + µ
. (3.35)

We note that there is frequency conservation: an electron with frequency iωi ab-

sorbs or emits a phonon of frequency iωj , so that the electron is scattered to an

intermediate state with frequency iωi − iωj . The summations are performed over

all intermediate electronic bands, momenta q, branches λ and frequencies. We will

follow the same strategy outlined in Sec. 1.4.2 and we define a function analogous

to Eq. (1.111)

F (ω) =
1

iωi − ω − ǫn′k−q + µ
·
[

1

ω + ωqλ
− 1

ω − ωqλ

]

, (3.36)

having poles at the frequencies ±ωqλ and iωi − ǫn′k−q + µ.

The summation over the Matsubara frequencies is performed by converting it

into an integral over a contour C′ enclosing all poles of the function F (ω)B(ω),
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where B(ω) is the Bose function distribution, whose poles occur at frequencies ωj =
2jπ
β
, j = 0, ±1, .... The suitable integration region C′ is shown in Fig. 3.14.

C
′

C

−ωqλ
ωqλ

Figure 3.14: The contour C′ on the complex plane used to integrate the polaronic self-energy.

The contour integral can be evaluated by applying the residuals theorem

∮

C′

dωF (ω)B(ω)

︸ ︷︷ ︸

I

= 2πi
[

Res [F (ω)B(ω)]|ω=±ωqλ
+

+ Res [F (ω)B(ω)]|ω=iωi−ǫn′k−q+µ

]

+

+

∮

C

dωF (ω)B(ω)

︸ ︷︷ ︸

J

. (3.37)

It implies to consider all residuals of F (ω)B(ω), both at poles of F (ω) and those of

B(ω) which fall within the contour C. The latest sum up to the integral J

J =

∮

C

dωF (ω)B(ω) =
2πi

β

+∞∑

j=−∞

F (iωj). (3.38)

Since the integral I on contour C′ : Reiθ vanishes when R → ∞, the summation

over the Matsubara frequencies which identifies the integral J is re–written in terms

of a sum of residues

− 1

β

+∞∑

j=−∞

F (iωj) = Res [F (ω)B(ω)]|ω=±ωqλ
+ Res [F (ω)B(ω)]|ω=iωi−ǫn′k−q+µ .

(3.39)
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The residues evaluated at each pole are shown as follows

ω = ωqλ Res1 = − B(ωqλ)

iωi − ωqλ − ǫn′k−q + µ
, (3.40)

ω = −ωqλ Res2 =
B(−ωqλ)

iωi + ωqλ − ǫn′k−q + µ
, (3.41)

ω = iωi − ǫn′k−q + µ Res3 =
2ωqλB(iωi − ǫn′k−q + µ)
[
(iωi − ǫn′k−q + µ)2 − ω2

qλ

] . (3.42)

Finally, we use the Bose function properties and the frequencies ωi as odd multiples

of π
β
to observe that B(−ωqλ) = −1−B(ωqλ) and B(iωi−ǫn′k−q+µ) = −1+fn′k−q.

These expressions can be readily exploited to rewrite Eq. (3.39) in a more compact

form

1

β

+∞∑

j=−∞

F (iωj) =
B(ωqλ) + 1− fn′k−q

iωi − ωqλ − ǫn′k−q + µ
+

B(ωqλ) + fn′k−q

iωi + ωqλ − ǫn′k−q + µ
. (3.43)

A summation over a suitable integration region leads to the final expression for

the electron-phonon Fan self-energy

ΣFan
nk (ωi) =

∑

n′qλ

| gqλn′nk |2

Nq

[
B(ωqλ) + 1− fn′k−q

iωi − ǫn′k−q − ωqλ
+

B(ωqλ) + fn′k−q

iωi − ǫn′k−q + ωqλ

]

. (3.44)

The self-energy defined by Eq. (3.44) is formally defined on the imaginary axis, due

to the use of the Matsubara technique. In order to link the Matsubara Green’s

functions to physical observables we need to rotate the energy variable from the

imaginary axis to the real axis, using an analytic continuation [24].

Eq. (3.44) on the real axis reads

ΣFan
nk (ω) =

∑

n′qλ

| gqλn′nk |2

Nq

[
B(ωqλ) + 1− fn′k−q

ω − ǫn′k−q − ωqλ − i0+
+

B(ωqλ) + fn′k−q

ω − ǫn′k−q + ωqλ − i0+

]

.

(3.45)

As the self-energy defined in Eq. (3.45) is a complex function, we can separate the

real from the imaginary part. The ℜΣFan
nk (ω) modifies the electron energy through

virtual scatterings (energy is not conserved) with a quantum of the lattice vibrations.

The ℑΣFan
nk (ω) instead, affects the particle lifetime, through real scatterings (energy

is conserved) with a quantum of the lattice vibrations.

For what concern ΣDW
nk , a frequency independent operator, it has the following

expression

ΣDW
nk = −

∑

qλ

1

Nq

∑

n′

1

2

Λqλ
nn′k

ǫnk − ǫn′k

(2B(ωqλ) + 1) , (3.46)

81



which corresponds to the Debye-Waller contribution to the thermal shift I have

already shown in Sec. 3.1. Such expression was achieved by imposing a condition

of translational invariance when every atom in the crystal is displaced of the same

amount from its equilibrium position (Eq. (3.10)).

The correction to the unperturbed energy ǫnk of the initial state, is given by a

purely real ΣDW
nk contribution, Eq. (3.46) and by the complex ΣFan

nk , Eq. (3.45). So

in the end every state nk is endowed of a complex energy. When the bare energy

ǫnk is far from a pole of the self-energy, then the renormalized energy is obtained by

Taylor expanding ℜΣFan
nk around the bare energy

Enk = ǫnk + ℜΣFan
nk (ǫnk) +

∂ℜΣFan
nk (ω)

∂ω

∣
∣
∣
∣
ω=ǫnk

(Enk − ǫnk), (3.47)

analogously to Eq. (3.30), but here derived in a more formal and clear manner. As

a consequence the contribution to the ℑΣFan
nk (ǫnk), coming from the real transitions,

is small. In these conditions a positive charge

Znk =

[

1− ∂ℜΣFan
nk (ω)

∂ω

∣
∣
∣
∣
ω=ǫnk

]−1

(3.48)

is associated to the electron. This charge is correctly smaller or equal to 1. These

are the basic ingredients to make the quasiparticle concept, identified by the case

(b) in Fig. 3.15, having supposed the existence of only one pole in the self-energy.

Figure 3.15: Real and Imaginary part of the self-energy. The energy range of the bare energy

determines the validity, or not, of Eq. (3.47).
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In this framework the origin of puzzling anomalous oscillations of Znk factors,

pointed out in the previous section, are clearly explained. If the bare energy is close

to an intense pole of the self-energy, where derivatives can be huge, then Eq. (3.47)

is not valid. The ℑΣFan
nk (ω) is not small and if it so, the electron remains in its

state for a short time. The electron, in fact, has a finite probability to scatter with

electrons and phonons in real transitions, having an energy comparable with the

pole of the self-energy. The electron will loose its identity, implying also unphysical

Znk factors.

Nevertheless, unpredictable oscillations by varying the number of bands were

observed in the previous section. I was induced to think that not only one but

more than one pole, accumulated around the bare energy ǫnk, can explain the origin

of such oscillations. Some of these poles, in fact, induce larger structures in the

imaginary part of the self-energy that is influenced even by small variations of the

number of bands.

The limit case (a) of Fig. 3.15, instead, Znk = 1, corresponds to have a pole of

the self-energy far from the bare energy ǫnk, so that the first derivative of ℜΣFan
nk (ω)

vanishes and ℑΣFan
nk (ǫnk) ≡ 0. The electron only scatters in virtual transitions with

the mean field created by the other particles, which renormalizes its energy. In these

conditions the energy corrections Eq. (3.47) are calculated up to the 0th–order in the

expansion, i.e. in the on mass shell limit.

Moreover the diagrammatic many-body approach correctly accounts for the time

dependence of the phonon amplitude. This is pointed out by the phonon frequencies

ωqλ, at the denominators of Eq. (3.45). However, in semiconductors and sometimes

in metals (except at low temperatures and at the Fermi level) the phonon frequency

can be neglected in the denominators with respect to the typical electronic energies.

So in the adiabatic limit, ωqλ ≪| ǫnk − ǫn′k−q | and in the on mass shell limit, the

HAC results are recovered.

In this chapter I brought into questions the limitations of the HAC approach,

when it is applied to the calculation of energy corrections. I highlighted that the

numerical instabilities are an evidence for a complex structure of the self-energy. In

particular, the presence of poles close to the bare energy, induces puzzling values of

Znk factors. In the next chapter I will discuss more extensively the physical meaning

of the Znk factors, within an extended quasiparticle approach.
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Chapter 4

Giant Polaronic Effects

In the previous chapter I showed that a straightforward application of the quasi-

particle (QP) picture in, and even beyond, the HAC approach leads to numerical

instabilities and unphysical Znk factors. I also discussed how these oscillations are

connected to the existence of intense poles of the self-energy close to the bare elec-

tron energies. As the Znk factors are also linked to the quasiparticle charge, I wonder

if such instabilities may even rule out the reliability of the QP concept!

For this reason in Sec. 4.1 I will review the concept of quasiparticle and of the

relative spectral function. In Sec. 4.2 I will show that in the case of polymers the con-

cept of quasiparticle fails, even at T = 0K, because of the existence of a multiplicity

of structures in the spectral function. Reformulating the problem in an Hamiltonian

representation I will show in Sec 4.3 that it is possible to identify each structure with

a particular polaronic state, a packet of electrons and phonons. Finally in Sec. 4.4

I will give physical interpretations of the breakdown of the quasiparticle picture in

terms of the Kohn-Sham (KS) charge distribution and of the isotopic effects.

4.1 Quasiparticles and Spectral Functions

The many-body Green’s function theory [1] represents the most appropriate frame-

work to describe and define the quasiparticles. In this theoretical framework, an

ideal quasiparticle is the original non-interacting particle dressed by the interac-

tion cloud [2]. The bare energy is renormalized because of the virtual scatterings

described by the real part of the self-energy. A key quantity in the QP picture is

the QP charge, Znk. This charge is 1 for a non interacting electron and ≤ 1 in the

QP. The Znk factors, indeed, measure the quality of the QP approximation. For

example, in strongly correlated materials the Znk factors are particularly small.
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The imaginary part of the self-energy is connected, instead, to the quasiparticle

lifetime. A longer lifetime indicates a more stable QP, that slowly decays because of

the scatterings with the other particles. Indeed a long lifetime is another condition

for the existence of the QP concept.

Both quasiparticle energy, Enk and lifetime 1/Γnk, are measurable with photoe-

mission experiments. The most natural quantity to compare experiment and theory

is the spectral function. A quasiparticle in fact appears as an excitation with a

perfect Lorentzian-shaped spectral function Ank(ω) = Γnk/ [(ω − Enk)
2 + Γ2

nk]. The

position of the peak, Enk, provides the quasiparticle energy while the width Γnk is

the inverse of the lifetime.

In the standard many-body perturbation theory instead the spectral function

(SF) is defined in terms of the imaginary part of the Green’s function of state nk

as follows

Ank(ω) = −1

π
ℑGnk(ω). (4.1)

The interacting propagator G(k, ω) is given in terms of the Fan self-energy by

Gnk(ω) =
1

ω − ǫnk −ℜΣFan
nk (ω)− iℑΣFan

nk (ω)
. (4.2)

The excited energies of the system can be obtained by solving the equation for the

poles of Eq. (4.2)

ω − ǫnk −ℜΣFan
nk (ω)− iℑΣFan

nk (ω) = 0. (4.3)

When the SF exhibits a peak and a branch cut in the region ω1 < ω < ω2, as

shown in Fig. 4.1, then the energy Enk of the pole can be found by applying the

Newton solver (see Eq. (3.47)) to Eq. (4.3).

Figure 4.1: In the QP picture the spectral function Ank(ω) has a sharp peak at Enk far from

the region where ℑΣ 6= 0, represented by the crosshatched distribution.
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Finally Eq. (4.2) can be re-written as

Gnk(ω) =
ZnkℑΣnk(ǫnk)

ω − (ǫnk + ZnkℜΣnk(ǫnk))
︸ ︷︷ ︸

Enk

−iZnkℑΣnk(ǫnk)
, (4.4)

leading to an expression for the SF around the main peak Enk given by

Aqp
nk(ω) =

ZnkℑΣnk(ǫnk)

[ω −Enk]
2 + [ZnkℑΣnk(ǫnk)]

2 . (4.5)

Eq. (4.5) defines the QP spectral function. When Aqp
nk(ω) collects most of the weight

Znk ≃ 1 and the QP approximation is well motivated. In this case, it is also possible

to associate a single, well defined energy to the particle. This is the basis of the

band theory, which allows to draw the band structure of the material.

It is interesting to observe that when Znk = 1 and ℑΣFan
nk (ǫnk) → 0 the SF

reduces to a delta function where the single particle states never decay, as shown

in Fig. 4.2. This is the SF, A
(0)
nk, of a bare particle with energy ǫnk. Also the HAC

approach and the on mass shell limit approximation leads to delta-like spectral

functions.

Figure 4.2: The unperturbed SF A
(0)
nk is represented by a delta function, while the interacting

spectral function Ank has often a finite width.

The SF Ank is a probability function. It gives the probability to find an electron

in the state labeled by band index n and momentum k with energy ω. Since the

total integrated area under the entire spectra is 1,
∫ ∞

−∞

dω

2π
Ank(ω) = 1, (4.6)

the existence of any area where ℑΣ 6= 0 (the crosshatched one in Fig. 4.1), implies

that the renormalization factor Znk is less than unity. This is a further proof of the

physical meaning of the Znk factors as electronic charge.
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In the following section I will investigate the electronic properties of polymers

when the electron-phonon interaction is introduced. I will show that the spectral

functions I obtained do hardly fit into the quasi particle picture that, instead, ap-

pears to be totally inappropriate.

4.2 Breakdown of the quasiparticle picture

In strongly correlated materials the small renormalization factors Znk point to the

creation of non qp-like excitations (like the Hubbard bands, for example). In the

present case the situation is even more puzzling. The renormalization factors are

non physical. As already pointed out previously, I linked this effect to the presence

of intense self-energy poles close to ǫnk.

The electronic spectral function provides the most direct way to test the quasi-

particle concept. I restrict the analysis to the T = 0K case, following the procedure

outlined in the previous section to calculate the spectral functions. In order to do

that I generated 100 unidimensional (along x̂ direction) random q points to better

perform the sum over phonons qλ, in Eq. (3.45). For each q point phonons and

electron-phonon matrix elements are calculated, using the electronic density of a

60×1×1 k-point grid, and 45 empty bands.

Figure 4.3: Trans-polyacetylene. Spectral function corresponding to the state | n = 1,k = Γ〉.
The position of the KS energy is indicated by the black dashed line.
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In Fig. 4.3 the spectral function of the state | n = 1,k = Γ〉 is depicted which,

calculated at T = 0K, covers an energy range of about 0.8 eV . This is clearly a first

evidence for the failure of the QP concept. Indeed, two distinct peaks appear: at

−16.6 and −16.32 eV . The existence of two peaks implies that the QP picture fails,

because the condition of only one pole collecting most of the weight is not satisfied.

It is worth to remind that this event occurs under the only effect of the zero point

motion. I will discuss more deeply the physical interpretation in the next section.

From a general point of view, however, the appearance of more than one peak in

the spectral function can be further discussed.

First of all, the KS bare energy, −16.37 eV , splits and moves aside of 0.05 eV

forming the peak R and of −0.23 eV for the peak L. As | n = 1,k = Γ〉 is originally
one electronic state, two peaks can not be two distinct QPs because, it would

mean to associate to each peak one electron. Instead the formation of two peaks

implies to consider an extended Fock space, composed of electrons and phonons. The

breakdown of the quasiparticle picture is linked to the fact that the electron takes

part in strong real transitions being its energy close to the poles of the self-energy.

These scatterings send the bare electron into more than one of the mixed states of

the extended Fock space (EFS). The stronger these scatterings are the more dressed

the electron will be. As a consequence the electronic charge, Znk, looses its physical

meaning.

The many-body framework does not provide the tools to add further information

about the composition of the “new” mixed states. The appropriate framework will

be built in the next section.

On the other hand an analysis of the most important phonon branches that

contribute to the spectral function can be carried out selecting the contribution

coming from the optical phonons, divided into two groups: the O1 branches (from

the 5th to the 10th) and the O2 branches (from the 11th to the 12th), as shown

in Fig. 2.6. From Fig. 4.4 I assert that the optical branches O1 mainly cause the

breakdown of the quasiparticle picture, while if only the scatterings with the optical

branches were considered they would renormalize the electron energy. However, in

both cases, I cannot explain the additional structures in the spectral functions as

due to phonon excitations only. Indeed the distance between the bare energy and

each of two peak does not correspond to any phonon frequency. For example the

peak R is at 0.05 eV from the bare energy. It corresponds to about 400 cm−1, the

typical energies of acoustic phonons. As I discarded the contribution coming from

the acoustic phonons as I discussed in Sec. 2.4, the new state builds up from a
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Figure 4.4: Trans-polyacetylene. Contributions of two groups of optical phonons to the spectral

function of state | n = 1,k = Γ〉.

particular combination of electrons and optical phonons. The same can be said for

the peak L. It moves aside in fact, of −0.23 eV which is equivalent to 1850 cm−1.

However it does not correspond to any phonon frequency, as confirmed by Fig. 2.6.

The peculiar shape of the spectral function depicted in Fig. 4.3 is not a fortu-

itous case. It is instead a general trend both in trans-polyacetylene and in polyethy-

lene. This is reasonable because both polymers have phonon frequencies of the

same order of magnitude of the electronic ones. The spectral functions for trans-

polyacetylene and polyethylene are largely structured in some cases. It means that

Eq. (4.3) has more than one solution and, as a consequence, the Green’s function

has more than one pole.

In Figs. 4.5 and 4.7 the KS band structure and a sample of spectral functions are

depicted, for trans-polyacetylene and polyethylene respectively. One of the most

striking aspect is the energy range spanned by the spectral functions, which is even

3 eV in some cases, like the 5th band of polyethylene shown in green in Fig. 4.7.

Another crucial aspect is that some spectral functions overlap, like the 3rd, the 4th

and the 5th band in trans-polyacetylene. In this case it is impossible both to associate

a single, well defined energy to the electron and to state which band it belongs to.
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Figure 4.5: The electronic band structure (on the left) and the spectral functions of trans-

polyacetylene calculated when the electron-phonon interaction is included (on the right). The

green line in the left panel marks the energy range on which the corresponding SFs are shown.

Figure 4.6: Trans-polyacetylene. Bidimensional representation of the probability amplitude. The

intensities of peaks are associated to a coloured scale, from white to black. The solid black lines

are the KS valence bands.

Interpreting the residue of each pole as the probability to find the electron in the

relative state, it is possible to make a bidimensional representation of the probability

amplitude.
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Figure 4.7: The electronic band structure (on the left) and the spectral functions of polyethylene

calculated when the electron-phonon interaction is included (on the right). The red line in the left

panel marks the energy range on which the corresponding SFs are shown.

Figure 4.8: Polyethylene. Bidimensional representation of the probability amplitude. The in-

tensities of peaks are associated to a coloured scale, from white to black. The solid black lines are

the KS valence bands.

In Figs. 4.6 and 4.8 to the probability is associated a value from 0 to 1 on a

coloured scale, from white (the less intense peak), to black (the most intense one).

Moreover the KS electronic bands are also drawn as a reference of the electronic band

structure before switching on the electron-phonon interaction. These pictures gather

all the information about the energy range covered by the spectral functions and the

intensity of all peaks. In Fig. 4.6 it is clearly shown that the spectral functions I

plotted in Fig. 4.7 for polyethylene, overlap near the edge of the Brillouin Zone. In
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Figure 4.9: A simplified picture of the different way to calculate the spectral function: the many-

body approach (left panel) and an expansion of the system eigenstates (right panel). In the second

case the different structures are interpreted as polaronic states | Ik〉.

particular I observe that the 5th band of polyethylene moves up close to Γ-point and

then the electron completely disappears. In general I observe that each band has a

different energy width which evolves in different manners moving from Γ to X .

The overall conclusion that can be drawn from the previous discussion is that

electrons cannot be assimilated to quasiparticles, i.e. electrons are strongly dressed

by the scattering with phonons. The SFs shown in Figs. 4.5 and 4.7 are clearly

not assimilable to QP spectral functions because of the existence of a multiplicity

of poles. They are the poles of the Green’s function, solutions of Eq. (4.3), each

one convoluted with a Lorentzian broadening. As a consequence the frequency

dependence of the self-energy, includes all the information concerning the main

structures of the spectral functions (left panel of Fig. 4.9).

The spectral function can be re-written as an expansion in the eigenstates | Ik〉
of the system

Ank(ω) =
∑

Ik

| 〈Ψ0 | c†nk | Ik〉 |2 ΓIk

(ω − EIk)2 + Γ2
Ik

, (4.7)

where | Ik〉, eigenstate of the electron-phonon Hamiltonian, is an element of the

EFS. In this way the shape of the spectral function is reproduced by weighting

each eigenvalue of the mixed system by a Lorentzian broadening. In particular to

each structure appearing in the spectral functions calculated within the many-body

approach, is associated a precise state | Ik〉 (right panel of Fig. 4.9). Therefore the

origin of the multiple poles in the spectral functions shown in Figs. 4.5 and 4.7 is

connected to the existence of more than one intense state | Ik〉 belonging to the

same state | nk〉.
Unfortunately the many-body approach suffers of some limitations: the eigen-

states of the system are not known. For this reason in the next section I will re-map

the structures of the Many-Body spectral functions to the solution of an eigenvalue

problem in the electron-phonon EFS. The eigenstates of the system will give inter-

esting information about the mixed electronic/phononic character of the polaronic

states.
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Figure 4.10: Phonon emission (on the left) and absorption (on the right) scattering events.

4.3 Multiplicity of the polaronic states: an Hamil-

tonian representation

In the previous section I supposed that the existence of more than one mixed

electron-phonon state | Ik〉 projecting on the state | nk〉, causes the appearance

of several structures in the spectral function. In order to verify this assertion, I map

the Many-Body spectral functions into the solution of an eigenvalue problem.

The basic Hamiltonian of the mixed electrons/phonons system is assumed to

have the form

Ĥ = Ĥe + Ĥp + Ĥep. (4.8)

The first term is the electronic Hamiltonian He, already outlined in Chap. 1. The

second term is the atomic Hamiltonian and the third one is the electron-phonon

interaction Hamiltonian, which, written in the second quantization, read

Ĥp =
∑

q,λ

ωqλ(b
†
qλbqλ +

1

2
), (4.9)

Ĥep =
1

Nq

∑

n,n
′
,k,

q,λ

gq,λ
n′nk

c†
n′

k+q
cnk(b

†
−qλ + bqλ), (4.10)

where c†
n′

k+q
and cnk are the creation and the annihilation operators for the electrons

with energies ǫn′
k+q and ǫnk in bands n′ and n with wavevectors k + q and k,

respectively. b†qλ and bqλ are the creation and annihilation operators for phonons

with energy ωqλ and wavevector q; the matrix element gq,λ
n′nk

describes the electron-

phonon coupling, defined in Chap. 3. Both the interaction terms are included: the

absorption and the emission of one phonon, as illustrated in Fig. 4.10.

The matrix elements must be written in an appropriate basis composed of inde-

pendent electronic and phononic states. This basis must be chosen in order to make

this approach equivalent to the many-body one. As outlined in Sec. 3.3.1 in the GW
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approximation only one phonon is assumed to be virtually scattered. As a conse-

quence at a given temperature, being Nqλ the mean phonon occupation number,

the complete basis set will be composed of the following elements

| nk〉 | Nqλ〉, | nk− q〉 | Nqλ ± 1〉. (4.11)

At zero temperature the basis set is reduced to

| nk〉 | 0ph〉, | nk− q〉 | {1qλ}〉, (4.12)

and it reflects the fact that at T = 0K no phonons in the ground state exist. As

a consequence phonons absorption is not admitted, and only one phonon can be

created.

As matrix elements corresponding to electronic states with different k do not

mix, the Hamiltonian is readily written in the form sketched in Fig. 4.11.

Figure 4.11: Electron-phonon Hamiltonian.

It can be verified that the Hamiltonian, shown in Fig. 4.11 is Hermitian, because

Hep is Hermitian. The dimension of the matrix, describing the system composed of

electrons and phonons, is obtained by multiplying the number of electronic bands

times the number of q vectors times the number of phononic branches, λ. This

confirms the need, previously mentioned, to consider an extended Fock space to

interpret the quasiparticle breakdown. As a consequence the number of eigenstates

is larger than that of the electronic Hamiltonian. Before analyzing in detail the

composition of the resulting eigenstates, I will first apply this procedure to a simple

test model.

4.3.1 A test system

Let us consider two levels of energies ǫi = 0, E coupled to a phonon of energy ω0 at

T = 0K, as shown in Fig. 4.12.
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0

Figure 4.12: The two levels model used as a test case.

Eqs. (4.8-4.10) thus reduce to a simple expression for the Hamiltonian of this

system

H =
2∑

i=1

ǫic
†
ici + ω0b

†
0b0 +

∑

i=1,2
j=1,2
i 6=j

gc†jci(b
†
0 + b0). (4.13)

For the reason outlined in the previous section the scattering with only one phonon

is considered and the basis set is

| 1〉 | 0ph〉, | 2〉 | 0ph〉, (4.14)

| 1〉 | 1ph〉, | 2〉 | 1ph〉, (4.15)

where by | i〉 I mean an electron in the level ith. The dimension of the Hamiltonian

matrix is then set by multiplying 2 bands × 1q point × 1 phonon branch, resulting

in a 4× 4 matrix

H =









0 0 0 g

0 E g 0

0 g ω0 0

g 0 0 E + ω0









, (4.16)

which can be diagonalized in two blocks, obtaining the following four energy levels

E1,2 =
E + ω0 ±

√

(E + ω0)2 + 4g2

2
, (4.17)

E3,4 =
E + ω0 ±

√

(E − ω0)2 + 4g2

2
. (4.18)

The corresponding four eigenvectors are

| I1〉 =
1

N1

(
g

E1

, 0 , 0, 1

)

, (4.19)

| I2〉 =
1

N2

(

1, 0 , 0,− g

E1

)

, (4.20)

| I3〉 =
1

N3

(

0, 1, − g

ω0 − E3
, 0

)

, (4.21)

| I4〉 =
1

N4

(

0,
g

ω0 − E3

, 1 , 0

)

, (4.22)
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where Ni are the normalization factors, N1 = N2 and N3 = N4.

These are the needed ingredients to calculate the Green’s functions as matrix

element of the resolvent

Gi(ω) = 〈vac | c1
1

ω −H
c+1 | vac〉. (4.23)

Expanding in eigenstates of the system, Eq. (4.23) becomes

Gi(ω) =

4∑

j=1

〈vac | ci
1

ω −H
| Ij〉〈Ij | c+i | vac〉

=
4∑

j=1

| 〈vac | ci | Ij〉 |2
1

ω − Ej

, (4.24)

where | vac〉 is the vacuum of phonons and electrons.

In order to show that the spectral functions calculated from Eq. (4.24) are anal-

ogous to the ones obtained in the MB approach, the Green’s function for the 1st

state is evaluated from Eq. (4.24) as follows

G1(ω) =
1

E1 − E2

[ −E2

ω − E1
+

E1

ω − E2

]

. (4.25)

On the other hand within the many-body approach Fan self-energy, Eq. (3.44),

in this test case reduces to

ΣFan
1 (ω) = g2

[
B(ω0) + 1− f2
ω − E − ω0 − i0+

+
B(ω0) + f2

ω − E + ω0 − i0+

]

. (4.26)

At zero temperature the Bose occupation factors vanish. The Fermi occupation

factor f2 in the Fan self-energy, Eq. (3.44) vanishes too, because the level is empty.

Eq. (4.26) becomes

G1(ω) =
1

ω − g2
[

1
ω−E−ω0

]

− i0+
. (4.27)

The poles of Eq. (4.27) are ω = E1 and ω = E2, defined by Eq. (4.17). The residues

evaluated at each pole are shown as follows

ω = E1 Res1 = − E2

E1 − E2
, (4.28)

ω = E2 Res2 =
E1

E1 −E2
. (4.29)

The final expression for G1 in the many-body approach is

G1(ω) =
1

E1 −E2

[

− E2

ω − E1 − i0+
+

E1

ω −E2 − i0+

]

, (4.30)
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to be compared with Eq. (4.25). The Green’s function G1, has components along

the two mixed states | I1〉 and | I2〉 and the energy difference between the two poles

is

E1 − E2 =
√

(E + ω0)2 + 4g2, (4.31)

which is larger than E + ω0, that is the energy difference when g → 0. When the

electron-phonon interaction is strong, a high potential barrier must be overcome to

create a scattering event. In order to do that a further amount of energy is needed.

This implies that each additional structure can not be interpreted in energetic terms

as simply an electron “plus” one phonon.

Even more complicated is the case when more than two electronic bands and

than one phonon are considered. In Fig.4.13 the many-body and the Hamiltonian

Figure 4.13: Spectral function G1(ω) of the level | 1〉 in a test system, calculated in two different

manners: many-body in blue solid line and by diagonalization of the electron-phonon Hamiltonian

in red dots.

representation approaches are successfully compared when 8 electronic bands and

all optical phonon branches are included. The two more intense peaks are 0.44 eV

far one each other, which is larger than the Debye frequency of this system. So the

excitation of one phonon can not explain the additional structure.
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4.3.2 The polaronic states

In order to better simulate a converged many-body spectral functions calculation,

the Hamiltonian Ĥ , shown in Fig. 4.11 is diagonalized including 30 electronic bands,

10q-vectors and 12 phonon branches. The eigenvalue problem Ĥ | Ik〉 = EIk | Ik〉
is satisfied by the following eigenstate

| Ik〉 =
∑

n

Ank | nk〉+
∑

n′qλ

Bn′qλ | n′k− q〉⊗ | qλ〉, (4.32)

with energy EIk . | Ik〉 is a polaronic state with wavevector k, i.e. a packet made

up of mixed electronic and phononic states. Since the Hamiltonian is written on a

complete basis, the coefficients Ank and Bn′qλ satisfy the following condition

∑

n

| AI
nk |2 +

∑

n′qλ

| BI
n′qλ |2= 1, (4.33)

and in general the eigenstates satisfy the following completeness relation

〈Jp | H | Ik〉 = δIJδkp. (4.34)

Once the eigenstates | Ik〉 and the eigenvalues EIk are known, the problem high-

lighted at the end of Sec. 4.2 is solved. The spectral function is calculated according

to Eq. (4.7) and all the more intense peaks appearing in the spectral functions of

state | nk〉, are unambiguously labeled with a particular | Ik〉 state, having | nk〉 as
the pure electronic component.

The Hamiltonian representation has the advantage to provide useful informa-

tion on the composition of the polaronic states. Let us consider the | n = 4,k =

0.2(2π
a
, 0, 0)〉 state as an example. In Fig. 4.14 it is shown the corresponding spectral

function.
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Figure 4.14: Trans-polyacetylene. Decomposition of the spectral function in polaronic states.

The poles and the corresponding residuals, indicated in Fig. 4.14 by bars with

different heights, are summarized in Tab. 4.1.

Decomposition of the spectral function

Pole (eV) Residual:| Ank |2 Pole (eV) Residual:| Ank |2

−5.25 0.27 10−1 −4.42 0.29 10−1

−5.21 0.11 10−1 −4.30 0.17

−4.88 0.58 10−1 −4.13 0.41 10−1

−4.73 0.89 10−1 −4.02 0.24 10−1

−4.65 0.45 10−1 −3.94 0.18 10−1

−4.63 0.15 10−1 −3.78 0.44 10−1

−4.60 0.26 10−1 −3.72 0.87 10−1

−4.54 0.59 10−1 −3.68 0.78 10−1

Table 4.1: Poles and residuals for the spectral function of | n = 4,k = 0.2(2π
a
, 0, 0)〉 state.

| AI
nk |2 is the probability to find the polaronic state in the pure electronic

| nk〉 state. This reminds the physical meaning of the Znk factors, but in this

contest the residual | AI
nk |2 can not be assimilated to the electronic charge. From

Tab. 4.1 it is in fact evident that the electron originally in the state | nk〉 is spread
over a multiplicity of states, each having a fictitious Znk factor less than 0.2. It

means that in each polaronic state, defined by Eq. (4.32), the mixed electron-phonon
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contribution weights the most.

Decomposition of the spectral function

Pole (eV) q λ Residual:
∑

n
′
qλ | Bn′

k−q |2

−5.25 3 7, 9, 10 0.89

7 7, 10

−5.21 3, 7 9, 10 0.88

−4.88 4 11 0.84

8 12

−4.73 5 4, 6 0.64

−4.65 5 6, 7, 9, 10 0.86

−4.63 5 7, 9, 10 0.92

−4.60 5 7, 9, 10 0.79

−4.54 2, 10 4 0.78

3, 7 6

5 10

−4.42 2 7, 9 0.78

3, 7 6

5 11

−4.30 2 9, 11 0.32

9 4

10 9

−4.13 2 11 0.60

9 4

−4.02 1, 9 10 0.65

5, 7 4

−3.94 3 7, 9, 10 0.79

5 7

7 9, 10

−3.78 1, 9 6 0.76

3, 7 11

−3.72 1 6 0.72

3, 5, 7 11

−3.68 5 11 0.70

Table 4.2: Poles, phonons and residuals of mixed electron-phonon states for the spectral func-

tion of | n = 4,k = 0.2(2π
a
, 0, 0)〉 state.
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The smaller the | AI
nk |2 is, the less the polaronic state can be assimilated to an

electron. It is possible to isolate the most important phonon or phonons involved in

the building up of the packet. They are summarized in Tab. 4.2.

| Bn′
k−q |2 is the probability that the polaronic state is in the mixed electron–

phonon | n′

k − q〉 ⊗ | qλ〉 state. Tab. 4.2 shows the sum of | Bn
′
k−q |2 over all the

most important phonons for each pole. By comparing Tabs. 4.1 and 4.2 it can be

verified that, for each pole, the sum of residuals is equal to 1. From an analysis of

Tab. 4.2 it can be inferred that between the two groups of phonon branches, O1 is

mainly involved. This is confirmed for the | n = 1,k = Γ〉 state in Fig. 4.15.

Figure 4.15: Trans-polyacetylene. Contribution of two groups of optical phonons to the spectral

function of state | n = 4,k = 0.2(2π
a
, 0, 0)〉.

The small Znk factors outlined for the | n = 4,k = 0.2(2π
a
, 0, 0)〉 state actually

represents a general trend. In Fig. 4.16 the projection | 〈Ik | nk〉 |2=| Ank |2 is

plotted as a function of the polaronic eigenvalues. Only few polaronic states have

Znk ≃ 1. Most of all are below 0.5, instead. It means that the mixed electron-phonon

part of the eigenstate, shown in Eq. (4.32), plays a dominant role.

To better characterize the polaronic states with a small electronic charge, further
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Figure 4.16: Trans-polyacetylene. The electronic charge Znk calculated as projection of the

polaronic state over the pure electronic state, | Ank |2. The bare electron charge is marked as limit

value.

information must be extracted. In principle the mean value of any observable can be

evaluated. For example the matrix elements of the atomic indetermination operator

can be calculated as follows

〈Jk | u2α,I,s | Ik〉 =
∑

n

| AI
nk |2

∑

qλ

(
1

2Nqωqλ

)

ǫα (qλ/s) ǫ
∗
α (qλ/s) +

+ 3
∑

n′qλ

| BI
n′qλ |2

(
1

2Nqωqλ

)

ǫα (qλ/s) ǫ
∗
α (qλ/s) . (4.35)

The values for the C and H species, calculated by Eq. (4.35), are shown in Tab. 4.3.

Trans-polyacetylene C H

a.u. a.u.

x̂ 0.18 0.55

ŷ 0.13 0.36

ẑ 0.11 0.56

Trans-polyacetylene C H

a.u. a.u.

x̂ 0.1 0.32

ŷ 0.07 0.21

ẑ 0.07 0.34

Table 4.3: Atomic amplitudes obtained by evaluating the matrix elements of operator u2
α,I,s:

bare values (right table) and with the electron-phonon interaction (left table).
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These values point to the fact that the atoms acquire an indetermination larger

along the x̂ direction, analogously to what I discussed in Sec. 2.5.

Even more interesting is to investigate the effect of the electron-phonon inter-

action on the final polaronic wavefunction ΨIk(~r) if compared to the corresponding

pure KS wavefunction:

| 〈~r | Ik〉 |2=| Ank |2| 〈~r | nk〉 |2 +
∑

n
′
q

| Bn′
k−q |2| 〈~r | n′k− q〉 |2 . (4.36)

The sum appearing in Eq. (4.36) is evaluated keeping the most important phonons

qλ shown in Tab. 4.2 and considering the corresponding electronic state | n′

k− q〉.
In Fig. 4.17 (A) the wavefunction of the bare state | n = 4,k = 0.2(2π

a
, 0, 0)〉 is

shown. The electron is mainly localized along the C −H bond. When the electron-

phonon interaction is switched on the wavefunction changes. In Figs. 4.17 (B) and

(C) the wavefunctions of two polaronic states with a small | Ank |2 are plotted. The
first corresponds to the pole −5.25 eV and the second to −4.73 eV . In general the

electron is mainly localized along the carbon backbone.

Figure 4.17: Trans-polyacetylene. A) Electronic density of the bare state | n = 4,k =

0.2(2π
a
, 0, 0)〉. B) and C) Polaronic wavefunction of two states which the bare state belongs to.

106



Combining the results concerning the atomic indetermination and the electronic

wavefunctions of the two polaronic states shown in Figs. 4.17 (B) and (C), it can be

concluded that electrons and phonons exert a cooperative effect on each other. The

charge density changes, spreading all along the polymer, while the atoms squeeze

along ŷ and ẑ directions, widening along x̂. This cooperation can cause, for exam-

ple, an enhancement of the mobility, opening therefore new perspectives for future

investigations and applications of polymers.

4.4 Charge distributions and isotope effects

In the previous section I have analyzed the consequences of the electron-phonon

interaction. Here I would like to investigate how it is possible to predict the break-

down of the quasiparticle picture starting from the bare electron charges and isotopic

effects.

Figure 4.18: Trans-polyacetylene. Correspondence between the energy width of the spectral

functions and the bare wavefunction of each electronic state.
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The aim of Fig. 4.18 is to set a link between the energy range covered by the

spectral functions and the KS wavefunctions. In each band, in fact, the spectral

functions differently evolves from Γ to X , also depending on the evolution of the

corresponding KS state, φnk = 〈~r | nk〉.
I started by dividing the space surrounding the trans-polyacetylene monomer

into four regions Ωi, of which three are depicted in Fig. 4.19. They have been

Figure 4.19: Projections on the xy plane of regions selected around the monomer, along the

double bond (1), the single bond (2) and the CH bond (3).

identified observing where the charge is localized mostly: along the double and the

single carbon bond (1st band), between the carbon-hydrogen bond (4th band), over

the carbons and perpendicular to the chain plane, where the polymer lies (π-orbitals

belonging to the 5th band). The last region is not shown in Fig. 4.19, because it is

a bidimensional representation. Additional regions originated by the overlap of the

previous ones have been taken into account to ensure that the total electronic charge

is normalized to 1,

N∑

i=1

∫

Ωi

| φnk(~r) |2dr = 1. (4.37)

In Fig. 4.20 (A) it is shown the charge density evolution along the 1st band. The

charge density in the three overlapping regions and that along the C − H bond is

constant and small. Close to Γ the charge density is initially equally distributed

between the single and the double C bond. Moving towards X the 2nd region is

gradually depleted, filling the 1st one. The electron is therefore mainly localized

along the carbon backbone. It therefore experiences mostly the carbon zero point

motion effect which is lower than the hydrogen one, as shown in Tab. 4.3.

It means a relative lower effect on the coupling with electrons which reflects on

a reduced energy spread of the spectral functions as clearly highlighted in Fig. 4.20

(B). In this figure the spectral function evolution from Γ to X is shown. Close to the
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Γ-point the spectral function shows two intense structures. Moving towards X the

spectral function gets sharper, with the polaronic states turning into a quasiparticle.

As a consequence a clear correspondence between the charge distribution and

the quasiparticle breakdown exists, if the different strength of double and single C

bonds is taken into account. As a double bond is stiffer than a single one, the zero

point motion effect of C atom is less effective, compared to the case where the charge

is localized both on the single and the double bond.

Figure 4.20: Trans-polyacetylene. Evolution of the charge distribution (top panel) and of the

spectral functions (bottom panel) with the electronic states belonging to the 1st band.

Different is the case for states belonging to the 4th band and having the charge
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distributed on C −H bonds. The spectral functions of this band are greatly struc-

tured, as showed in the previous section.

Figure 4.21: Trans-polyacetylene. Evolution of the charge distribution (top panel) and of the

spectral functions (bottom panel) with the electronic states belonging to the 4th band.

In Fig. 4.21 (A) it is illustrated the charge density evolution from Γ to X of the

4th band. The charge distributed in the overlapping regions and belonging to the

π-orbitals is constant and small. More generally the charge is more concentrated

along the C − H bond, leaving the 2nd region lightly empty and partially filling

the 1st region. In this conditions the electron experiences the H zero point motion

effect, which is larger than the C one. It causes the 4th electronic band to completely
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disappear close to X . The spectral functions in fact evolve to strongly structured

functions that cover a wide energy range.

The case of π orbitals is different. The electron is not affected by the zero point

motion effect of the C atom, whose indetermination along the ẑ direction is, in fact,

the smallest one. Therefore in these states the electron behaves as a quasiparticle.

I also investigated the quasiparticle breakdown in terms of isotopic effects. The

C and H atoms are replaced by equivalent atoms having an infinite mass. Such

a strategy is equivalent to nullify the zero point motion effect and the consequent

electron-phonon coupling at the zero temperature. In order to understand the role

played by the two atomic species I used a uniform one dimensional grid of 10q

and the density optimized on a one dimensional k grid 10 × 1 × 1 to calculate the

phonons, while for the electron-phonon matrix elements I used 25 empty bands.

Figure 4.22: Trans-polyacetylene. Analysis of isotopic effects for state | n = 1,k = Γ〉.

In Fig. 4.22 the spectral function for the | n = 1,k = Γ〉 state is shown. When

the carbon atom is replaced by a carbon with a huge mass, the only zero point

motion effect of hydrogen renormalizes the electronic energy. While if the H atom

is replaced by an hydrogen with a huge mass, the carbon zero point motion ef-

fect causes the breakdown of the quasiparticle picture. This analysis confirms what

I showed before: the breakdown of the quasiparticle picture along the 1st band,

is carbon dictated. Indeed, the charge analysis showed that the charge density is

localized along the carbon backbone.
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Figure 4.23: Trans-polyacetylene. Analysis of isotopic effects for state | n = 4,k = 0.4(2π
a
, 0, 0)〉

.

In Fig. 4.23, instead, the spectral function for the | n = 1,k = 0.4(2π
a
, 0, 0)〉 state

is shown. Even this case confirms the previous analysis on the charge distribution.

The quasiparticle breakdown of the 4th band is both carbon and hydrogen dictated.

Only replacing both atoms with equivalent atoms having huge masses, the spectral

function reduces to a delta function centered at the bare energy of the considered

electronic state.

In conclusion hydrogen alone is not able to cause the failure of the quasipar-

ticle picture. quasiparticle breakdown in polymers is both Hydrogen and Carbon

dictated.
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Conclusions

The results presented in this thesis lead to a main conclusion: the frozen atoms

approximation, commonly assumed in ab-initio calculations, is seriously broken in

carbon based polymers.

This was already clear when I simulated the zero point motion effect by using

a Gaussian random walker. Small atomic movements around the equilibrium posi-

tions produce great changes in the single particle electronic energies. The spectral

function of each electronic level spreads over an energy range as large as 2 eV . Al-

though this approach overestimates the zero point motion effect (atomic movements

are chaotic and do not respect phonon symmetries) the link between the quantum

fluctuations and the electronic levels is established.

To better investigate and confirm the strong electron-phonon coupling I per-

formed an accurate study of the polaronic corrections in trans-polyacetylene and

polyethylene within the HAC approach. Although it represents a well established

approach, I readily realized that the HAC theory suffers of some limitations. The

quasiparticle corrections, in fact, appear to be uncontrollably affected by serious

numerical instabilities pointing to a complicate dependence on the energy of the

self-energy.

I tried to cure the problem by releasing the adiabatic approximation on which the

HAC approach is based. Nevertheless I showed that a straightforward application

of the quasiparticle picture in the HAC approach leads to unphysical quasiparti-

cle charges (the renormalization factors Znk).

To trace back the motivations for the unphysical Znk factors to the frequency

dependence of the electron-phonon self-energy I applied the quasiparticle concept

within the more general many-body perturbation theory framework.

In this framework the unexpected oscillations of the Znk factors are ascribed to

the closeness of the bare energy to the multiple and intense poles of the self-energy.

This brought into question one of the basic condition of reliability of the quasipar-

ticle picture. Indeed a structured self-energy near the bare energy can induce the
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electron to scatter with electrons and phonons. These real transitions represent the

poles of the self-energy and can potentially lead to a complete dephasing of the

electronic state.

Indeed the quasiparticle picture is definitely demonstrated to fail, when the spec-

tral functions are analyzed. The first remarkable feature is that they span an energy

range as large as 3 eV , confirming what was predicted by the Gaussian random walk

analysis. Even if this represents the general trend, the analysis in terms of the

Kohn–Sham orbitals reveals that the energy range is reduced if the charge is lo-

calized on the carbon backbone. On the contrary, the electron localized along the

C −H bond experiences a larger dephasing induced by the huge zero point motion

effect of the hydrogen atom. Some spectral functions even overlap preventing to

associate a single, well defined energy and a band index to the electrons. This is the

breakdown of the band theory.

The second striking point is the multiple structures appearing at T = 0K.

The formation of additional structures suggests to consider the electron-phonon

interaction in an extended Fock space composed by electrons and phonons. By

mapping the structures of the many-body spectral functions into the solution of an

eigenvalue problem, I associated each structure to a particular polaronic state | Ik〉.
Because of its non perturbative nature, each polaronic state represents a coherent

packet of electron–phonon pairs. This coherence is clearly manifested by the coop-

erative dynamics of electrons and phonons participating in the polaronic packet,

which results in a modified spatial distribution.

In the final polaronic wavefunction, in fact, electrons, originally localized on the

C − H bond, are spread along the polymer axis. Similarly atoms embodied in the

polaronic state increase their spatial indetermination.

The resulting coupled electronic and atomic dynamics pave the way for new

investigations in polymers and more in general in carbon based nanostructures.

The cooperative dynamics of electrons and phonons in the polaronic states can have

potential physical implications, as for example, an enhancement of the electronic

mobility.

More generally the breakdown of the quasiparticle picture and of the band theory

imposes a critical analysis of the previous results obtained using purely electronic

theories.
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Appendix

A.5 Statistical Mechanics in Occupation Number

Formalism

The occupation number formalism is appropriate to deal with a system in which the

particles number is not fixed. As a member of the grand-canonical ensemble, the

system is immersed in a reservoir at T fixed, with which it exchanges particles and

energy.

Let’s suppose to know the Hamiltonian H and the state of the system | Ψi〉 that
satisfies the equations:

H | Ψi〉 = Ei | Ψi〉 and
∑

k

c†kck | Ψi〉 = Ni | Ψi〉. (A.38)

As N is not fixed, | Ψi〉 depends on N .

The probability that the system, as a member of an ensemble, is in the state

| Ψi〉 with energy Ei and particle number Ni, is

Pi =
e−(β(Ei−µNi))

∑

i e
−(β(Ei−µNi))

=
ρi
Z
, (A.39)

where ρi is the grand distribution function, while Z is the grand partition distribution.

Eq. (A.39) can also be written in terms of the grand distribution operator ρ̂

Pi =
〈Ψi | ρ̂ | Ψi〉
∑

i〈Ψi | ρ̂ | Ψi〉
. (A.40)

It’s natural now to define the average value of any operator Ô in the following

way

Ô =
∑

i

〈Ψi | Ô | Ψi〉Pi =
trÔρ̂
trρ̂

. (A.41)
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As the MB state vector | Ψi〉 is not known, Eq. (A.41) can be re-written using

the property of the trace to be invariant under change of representation. The new

basis is composed by the eigenstates of a non interacting system | Φi〉

Ô =

∑

i,p〈Φi | Ô | Φp〉〈Φp | ρ̂ | Φi〉
∑

i〈Φi | ρ̂ | Φi〉
. (A.42)

Now we consider just a non-interacting system whose Hamiltonian and the state

vector read

H0 =
∑

k

ǫkc
†
kck and | Φi〉 =| ni

1, ..., n
i
k, ...〉 (A.43)

where ni
k is the occupation number of the state k of the eigenstate | Φi〉. The gran

distribution function of the non interacting system is

ρi0 = 〈Φi | e−β(H−µN) | Φi〉
= 〈ni

1, ..., n
i
k, ... | e−β

∑

k(ǫk−µ)c†
k
ck | ni

1, ..., n
i
k, ...〉

= 〈ni
1, ..., n

i
k, ... |

∏

k

e−β(ǫk−µ)c†
k
ck | ni

1, ..., n
i
k, ...〉

=
∏

k

e−β(ǫk−µ)ni
k , (A.44)

while the grand partition function may be written

Z0 = trρ0 =
∑

i

ρi0 =
∑

i

〈Φi |
∏

k

e−β(ǫk−µ)ni
k | Φi〉

=
∑

ni
1
,...,ni

k
,...

〈ni
1, ..., n

i
k, ... |

∏

k

e−β(ǫk−µ)ni
k | ni

1, ..., n
i
k, ...〉

=
∑

ni
1
,...,ni

k
,...

∏

k

e−β(ǫk−µ)ni
k

= 1 + e−β(ǫ1−µ) + e−β(ǫ2−µ) + ...+

+ e−β(ǫ1−µ) · e−β(ǫ2−µ) + ...

=
∏

k

[
1 + e−β(ǫk−µ)

]
, (A.45)

where we have used that nk = 0 or 1.

Using Eqs. (A.44) and (A.45) it is possible to calculate the average value of

operators for the non–interacting system. For example the occupation number in
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the state k of the non–interacting system can be easily calculated in this way

〈c†kck〉0 =
∑

i

〈Φi | c†kck
∏

l

e−β(ǫl−µ)ni
l | Φi〉

=
∑

ni
1
,...,ni

k
,...

〈ni
1, ..., n

i
k, ... | c†kck | ni

1, ..., n
i
k, ...〉 ·

∏

l

e−β(ǫl−µ)ni
l

1 + e−β(ǫl−µ)

=
e−β(ǫk−µ)ni

l

1 + e−β(ǫk−µ)
·
∑

...,ni
k
,...

∏

l 6=k

e−β(ǫl−µ)ni
l

1 + e−β(ǫl−µ)

︸ ︷︷ ︸

1

=
e−β(ǫk−µ)

1 + e−β(ǫk−µ)

=
1

eβ(ǫk−µ) + 1
, (A.46)

where the only terms contributing to the sum are those for which

〈. . . , ni
k, . . . | c†kck | . . . , ni

k, . . .〉 = 1 (i.e. nk = 1). (A.47)

In conclusion we get the definition of the “hole” Fermi function distribution

〈c†kck〉0 = f−
k . (A.48)

The “particle” Fermi function distribution is as much as straightforward to obtain,

〈ckc†k〉0 = 1− 〈c†kck〉0
= 1− 1

eβ(ǫk−µ) + 1

=
1

e−β(ǫk−µ) + 1
= f+

k . (A.49)

The particle and the hole Fermi function distribution are shown in Fig. 24.

Figure 24: Statistical Factors for the particles (f+) and holes (f−).
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